國立政治大學 110 學年度碩士班暨碩士在職專班招生考試試題

第1頁,共2頁

試 科 目 統計學B

系所別

金融學系財務工程 與金融科技組

考試時間 2月4日(Ш) 第三節

Short Answer Questions

Write your answers on the answer sheet. No need to provide details unless otherwise told. Each blank worths 5 points.

- In a survey of 300 visitors, 165 responded that they prefer to go to the beach and 135 responded that they prefer to stay in their hotels. Let p denote the fraction of all visitors who prefer to go to the beach and $\Phi(\cdot)$ be the cumulative probability density function of the standard normal distribution. The approximate p-value for the test $H_0: p = 0.5$ versus $H_1: p > 0.5$ in terms of $\Phi(\cdot)$ is (1). If the true p is 0.6 and the significance level $\alpha = 0.05$, the power of this test in terms of $\Phi(\cdot)$ is (2)
- \blacksquare Let X be the number of weeks before the prices change in a grocery store and p be the probability of updating the prices in a given week. The pricing decision is independent between any two weeks. If the distribution of X is described by

$$f(x) = {x-1 \choose r-1} p^r (1-p)^{x-r},$$

where x = r, r + 1, ... The average duration of prices in this store is (3) if r = 1.

- Let X and Y be two random variables where $E(X) = \mu_X$, $Var(X) = \sigma_X^2$, $E(Y) = \mu_Y$, $Var(Y) = \sigma_Y^2$ and their correlation is ρ . If E(Y|X) = a + bX where a and b are constants, then a = (4), b = (5), and E[Var(Y|X)] = (6)
- \blacksquare Let X be a random variable with the distribution

$$f(x) = \frac{x^{\alpha - 1}}{\Gamma(\alpha)\beta^{\alpha}} \exp\left(-\frac{x}{\beta}\right),\,$$

where $\alpha > 0$ and $\beta > 0$. If Y = 1/X, the probability density function of Y is ___(7)__, and $E(Y^r) = (8)$, where r is a positive integer.

^{- 、}作答於試題上者,不予計分。

二、試題請隨卷繳交。

國立政治大學 110 學年度碩士班暨碩士在職專班招生考試試題、

第2頁,共2頁

考試科目 統計學B 系所別 金融學系財務工程 考試時間 2月4日(1111)第三節

- Let X be a random variable with the distribution $f(x) = \theta x^{\theta-1}$, where 0 < x < 1 and $\theta > 0$. Let $E(X) = \mu_x$ and $\widehat{S} = (1/n) \sum_{i=1}^n X_i$, where i = 1, 2, ..., n. The statistic \widehat{S} converges in probability to $\underline{\hspace{0.5cm}}(9)$, and $\sqrt{n}(\widehat{S} - \mu_x)$ converges in distribution to $\underline{\hspace{0.5cm}}(10)$.
- Consider a linear model $y_i = \beta x_i + u_i$ where $u_i | x_i \sim N(0, \sigma_u^2)$. The maximum likelihood estimator $\widehat{\beta} = \underline{\hspace{0.5cm}} (11)$, and the maximized log likelihood in terms of the residual \widehat{u}_i is $\underline{\hspace{0.5cm}} (12)$
- Consider a linear model $y_i = \mu + \eta_i$ where $E(\eta_i) = 0$ but $Var(\eta_i)$ and the distribution of η are unknown. The method of moments estimator for μ is ___(13)__, and an appropriate estimator for $Var(\eta_i)$ in this case is ___(14)__.
- Consider a time series $y_t = 0.5y_{t-1} + \epsilon_t$ where $\epsilon_t \stackrel{i.i.d.}{\sim} (0, \sigma_{\epsilon}^2)$. Its long-run variance is $\underline{(15)}$, and the first-order autocorrelation function is $\underline{(16)}$. Consider another process $y_t = 0.5y_{t-1} + \phi y_{t-2} + \epsilon_t$. The range of ϕ that ensures the stationarity of this process is $\underline{(17)}$.
- The table below displays twenty actual observations of a binary variable Y and the predicted probability $\Pr(Y = 1|X)$ using a set of variable X.

			The same of the sa			-				
Actual	1	1	0	1	0	0	1	0	0	0
Predicted	0.58	0.42	0.12	0.85	0.72	0.08	0.81	0.24	0.61	0.03

Actual	1	1	0	1	0	0	1	0	0	1
Predicted	0.02	0.75	0.33	0.69	0.38	0.59	0.39	0.27	0.17	0.75

The odds of Y=1 relative to Y=0 is __(18)__. Given the criterion $\widehat{Y}=1$ if $\Pr\left(Y=1|X\right)\geq0.5$ and $\widehat{Y}=0$ otherwise, the percent of correct prediction is __(19)__, and the coordinate on the receiver operating characteristic (ROC) curve is __(20)__.

註

^{-、}作答於試題上者,不予計分。

二、試題請隨卷繳交。