考試科目微積分 系所别 图質系 考試時間 2月5日(五)第4節

%Show all your work. Unjustified answers will receive no credit.

- 1. Evaluate the following integrals:
 - (a) $\int_1^e \ln \sqrt[3]{x} \, dx$
 - (b) $\int_0^1 e^{(x-e^x)} dx$
 - (c) $\int_0^1 x^2 e^x dx$

(d) $\int_0^2 \frac{10x^2 - 12}{x^4 - 5x^2 - 36} dx$ (20%)

2. Evaluate the following limits:

(a)
$$\lim_{x \to 1} \frac{x^{2x} - 1}{x - 1}$$
 (b) $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{\pi i}{n^2} \sin(\frac{\pi i^2}{n^2})$ (10%)

- 3. For the demand equation $x^2 + 4xp + 4p = 18000$, find $\frac{dp}{dx}$ at p = 11 and x = 2. (10%)
- 4. Use Lagrange multipliers (拉氏乘子法) to find the points on the sphere $x^2 + y^2 + z^2 2y = 35$ closest to and farthest from the point (1, -1, 2). (10%)
- 5. Find the area between the graphs $y=2^x$ and $y=2^{-x}$ over $-1 \le x \le 2$. (10%)
- 6. Determine convergence or divergence of the series $\sum_{n=0}^{\infty} (\sqrt{n^2+1}-n)$. (10%)
- 7. Let $f(x) = \sqrt[3]{x+1}$. Use the definition of derivative (no differentiation rule) to find f'(x). (10%)
- 8. Use total differential (全微分) to approximate the value of $(1.01)^7 \times (1.98)^4$. (10%)
- 9. Evaluate the iterated integral $\int_0^4 \int_{\sqrt{y}}^{\sqrt{8-y}} \frac{1}{(1+y)^2} dx dy$. (10%)

一、作答於試題上者,不予計分。

二、試題請隨卷繳交。