國立臺北科技大學109學年度碩士班招生考試

系所組別:2240 電子工程系碩士班丁組

第一節 電子學 試題

第1頁 共1頁

Load

- (30%) Consider a cascaded amplifier in Fig. 1. The $R_s=10 \text{ k}\Omega$, $R_{i1}=90 \text{ k}\Omega$, $R_{o1}=5 \text{ k}\Omega$, $R_{i2}=95$ k Ω , R_{o2} =20 k Ω , and R_L =80 k Ω .

- 1. Calculate voltage gain of the stage 1 ($A_{v1} \equiv v_{i2}/v_{i1}$). (10%)
- 2. Calculate the overall voltage gain (v_L/v_s) . (10%)
- 3. Calculate the overall current gain (i_0/i_i) . (10%)

Source

Stage 2

= (40%) Fig. 2 shows a BJT amplifier in forward active mode. Resistor r_o due to channel length modulation should be considered.

- 1. Please plot the overall equivalent small-signal circuit by using π model. (10%)
- 2. Please derive the overall voltage gain ($G_v \equiv v_o/v_s$). (10%)
- 3. Please derive the input resistance (R_{in}) and output resistance (R_{out}) . (10%)

Stage 1

4. Please derive the shorted-circuit current gain (A_{is}) in terms of g_m , R_B , and r_{π} . (10%)

open-circuit time constants to characterize this circuit. 1. Derive the open-circuit time constant of C_{gsl} . (5%) 2. Derive the open-circuit time constant of C_{gdl} . (10%)

- 3. Derive upper 3-dB frequency ω_{H} . (5%)
- 4. Derive the midband gain $(A_M \equiv v_o/v_{in})$. (10%)

 \equiv (30%) Fig. 3 shows a high-frequency equivalent circuit of a MOS amplifier. Please use