109CH03

國立臺北科技大學 109 學年度碩士班招生考試 系所組別:3510 化學工程與生物科技系化學工程碩士班甲組 第二節 化工熱力學與反應工程 試題

第1頁 共1頁

注意事項:

- 1. 本試題共 4 題, 每題 25 分, 共 100 分。
- 2. 不必抄題,作答時請將試題題號及答案依照順序寫在答案卷上。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。
- 1. Consider the reaction $F \rightarrow P + G$
 - (a) Construct a rate law (-r_F') by observing the data shown in the Table. (6%)
 - (b) Propose a mechanism for the reaction with the experimental data shown in the Table. (9%)
 - (c) Derive the rate-limiting step analysis to verify the proposed mechanism fits the rate law. (10%)

		Partial Pressure (atm)			
Run	Rate (mol/g cat. • s) —	F	P	G	
1	0.160	15	1	1	
2	0.163	10	1	0	
3	0.159	15	1	10	
4	0.106	10	2	0	
5	0.011	0.1	2	0	
6	0.050	0.5	2	1	

2. In a binary system, the excess Gibbs energy (G^E) can be expressed as follows.

$$R{\boldsymbol{\cdot}} T{\boldsymbol{\cdot}} G^E = Q{\boldsymbol{\cdot}} X_1{\boldsymbol{\cdot}} X_2$$

where R is the idea gas constant, T is temperature, Q is constant, X_1 is the mass fraction of component 1, and X_2 is the mass fraction of component 2. Calculate the range of Q for two coexisting liquid phase and the composition range of component 2 with Q = 3. (25%)

- 3. Three reactions were connected with the sequence of PFR \rightarrow CSTR \rightarrow PFR, the entering molar flow rate (F_{A0}) is 30 kmol/h and the final conversion is 90%.
- (a) What would be the reactor volume for <u>these three reactors</u> if two intermediate conversions $(X_1 \text{ and } X_2)$ are 50% and 75%, respectively? (15%)
- (b) What is the conversions X₁ and X₂ if all these three reactors having the same volume? (6%)
- (c) What is the worst way to arrange two PFR and one CSTR? (4%)

X	0.0	0.1	0.2	0.45	0.55	0.75	0.80	0.90
-r _A (kmol/m ³ ·h)	0.63	0.84	1.25	1.25	1.25	1.25	0.63	0.42

4. A plant operates on a Brayton cycle with the pressure ratio of 9. The compressor inlet has a gas temperature of 300 K. Heat added in the chamber is 580 kJ/kg. The compressor isentropic efficiency is 70% and turbine isentropic efficiency is 75%. Determine the gas temperature at exit of compressor and turbine. (15%) Calculate the heat rejected per unit mass flow, and the efficiency of the Brayton cycle. (10%) Hint: $C_p = 1.005 \text{ J/g} \cdot \text{K}$