

系所:化材系

科目: 化工動力學

1. The reaction A \rightarrow 2B is carried out isothermally in a continuous-flow reactor. The entering volumetric flow rate and molar rate are 20 dm³ h⁻¹ and 10 mol h⁻¹, respectively. Assume the reaction rate is $-r_A = kC_A$ with k = 0.0001 s⁻¹.

- (a) Calculate both the CSTR and PFR reactor volumes necessary to consume 90% of A. (16%)
- (b) Calculate the time necessary to consume 99% of species A in a 1000 dm³ constant volume batch reactor with $C_{A0} = 0.5 \text{ mol dm}^{-3}$. (8%)
- 2. The space time necessary to achieve 70% conversion in a CSTR is 4 h. The entering volumetric flow rate and concentration of reactant A are 1.5 dm³ min⁻¹ and 2.0 mol dm⁻³, respectively.
 - (a) Determine the rate of reaction. (5%)
 - (b) Determine the reactor volume. (5%)
 - (c) Determine the exit concentration of A. (4%)
- 3. The rate law for the reaction A + 2B \rightarrow C is $-r_A = kC_AC_B^2$ with $k_A = 24$ dm⁶ mol⁻² s⁻¹. What are k_B and k_C ? (12%)
- 4. For a liquid-phase reaction operating in a 40 L CSTR, the concentrations of the A and B feed streams are 3.2 and 2.4 M before mixing, respectively. The volumetric flow rate of each stream is equal. It is known that k_1 and k_2 are 9 and 1.5 L mol⁻¹ min⁻¹, respectively. Determine the total flow rate of A and B, if 75% conversion of the entering species B is required. (25%)

$$A + B \xrightarrow{k_1} R + S$$

$$k_2$$

國立雲林科技大學 114 學年度

碩士班招生考試試題

系所:化材系

科目:化工動力學

5. Suppose a liquid-phase reaction $(A \rightarrow B + C)$ is carried out isothermally and the data are as following:

Conversion, X	0	0.2	0.4	0.45	0.5	0.6	0.8	0.9
-r _A (mol L ⁻¹ min ⁻¹)	13	21.7	65	65	65	65	16.3	11.8

The molar flow rate of A is 0.5 kmol min⁻¹.

- (a) For a single CSTR, what is the volume necessary to achieve 80% conversion of the entering species A? (7%)
- (b) For a single PFR, what is the volume necessary to achieve 80% conversion of the entering species A? (8%)
- (c) To achieve 80% conversion of the entering species A, how to arrange the reactors to minimize the total volume of reactors? (10%)