題號: 201

國立臺灣大學 114 學年度碩士班招生考試試題

科目:統計理論

節次: 4

1. Let X_1, X_2, \ldots, X_n be independent identically distributed (i.i.d.) from normal distribution $N(0, \sigma^2)$. Consider the following estimators:

$$T_1 = \frac{1}{2}|X_1 - X_2|$$
 and $T_2 = \sqrt{\frac{1}{n}\sum_{i=1}^n X_i^2}$.

- (a) (5 points) Is T_1 unbiased for σ ? Evaluate the mean square error (MSE) of T_1 .
- (b) (6 points) Is T_2 unbiased for σ ? If not, find a constant c such that cT_2 is unbiased for σ .
- 2. Let X_1, X_2, \ldots, X_n be a random sample from a population with probability density function

$$f(x|\theta) = \frac{3x^2}{\theta^3}, \ 0 < x \le \theta;$$

where $\theta > 0$.

- (a) (5 points) Find the maximum likelihood estimator of θ .
- (b) (5 points) Find the method of moments estimator of θ .
- (c) (7 points) Obtain a pivotal quantity of θ . A pivotal quantity is defined as a function of the data and the parameter θ but whose distribution is free of the parameter.
- (d) (5 points) Use the pivotal quantity from (c) to derive a $(1 \alpha) \times 100\%$ two-sided confidence interval for θ .
- 3. Let X_1, X_2, \ldots, X_n be a random sample from a population with probability density function

$$f(x|\theta) = \frac{2x}{\theta}e^{-x^2/\theta}, \ x > 0;$$

and $f(x|\theta) = 0$ for $x \le 0$.

- (a) (5 points) Show that X_1^2 is an unbiased estimator of θ .
- (b) (7 points) Find the Cramér–Rao Lower bound (CRLB) for the variance of an unbiased estimator of θ .
- (c) (5 points) Find the uniformly minimum variance unbiased estimator (UMVUE) of θ .

題號: 201 科目:統計理論 統本: 4

題號: 201

共プ頁之第シ頁

4. Let X_1, X_2, \ldots, X_n denote a series of random variables sampled from a distribution with probability density function $f(x; \theta)$. Suppose that a test of level α is required to evaluate $H_0: \theta = \theta_0$ and $H_1: \theta = \theta_1$.

- (a) (10 points) State and prove Neyman-Pearson lemma.
- (b) (5 points) Assume that X_1, X_2, \ldots, X_n are sampled from $N(\mu, 1)$. Find a best critical region for $H_0: \mu = 0$ and $H_1: \mu = 1$ at level α .
- 5. Let X denote a sample form a distribution ξ . Suppose that a test of level α is required to evaluate $H_0: \xi = \xi_0$ and $H_1: \xi = \xi_1$, where ξ_i is a known distribution with probability density function $f_i(\cdot)$. For any $\alpha > 0$, define

$$T_{\alpha}(X) = \begin{cases} 1 & \text{if } f_1(X) > c(\alpha)f_0(X); \\ r(\alpha) & \text{if } f_1(X) = c(\alpha)f_0(X); \\ 0 & \text{if } f_1(X) < c(\alpha)f_0(X), \end{cases}$$

where $0 \le r(\alpha) \le 1$, $c(\alpha) \ge 0$, and $E[T_{\alpha}(X)|\xi = \xi_0] = \alpha$.

- (a) (10 points) Show that $c(\alpha_1) \ge c(\alpha_2)$ if $\alpha_1 < \alpha_2$.
- (b) (10 points) Show that the type II error probability of $T_{\alpha_1}(X)$ is larger than the type II error probability of $T_{\alpha_2}(X)$ if $\alpha_1 < \alpha_2$.
- 6. (15 points) Let Y_1 and Y_2 denote two independent multivariate normal random vectors given by

$$Y_1 \sim N(\gamma_{10}\mathbf{1}_n + Z\gamma_1, \sigma^2 I_n)$$
 and $Y_2 \sim N(\gamma_{20}\mathbf{1}_n + Z\gamma_2, \sigma^2 I_n)$,

where γ_{10} and γ_{20} are parameters, γ_1 and γ_2 are $q \times 1$ parameter vectors, and Z is an $n \times q$ full-column-rank matrix. Note also that $\mathbf{1}_n$ is the $n \times 1$ vector of ones and I_n is the identity matrix of order n. Find a likelihood ratio test of level α for $H_0: \gamma_1 = \gamma_2$ and $H_1: \gamma_1 \neq \gamma_2$.