國立臺灣科技大學 114學年度碩士班招生

試題

系所組別:0710電機工程系碩士班甲組

科 目:電力系統

<<507101>>

國立臺灣科技大學 114 學年度碩士班招生試題

系所組別:電機工程系碩士班甲組

科 目:電力系統

(總分為100分;所有試題務必於答案卷內頁依序作答)

1. (20%) The three-phase power and line-line ratings of the electric power system shown in Fig. 1 are given below.

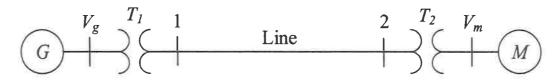


Fig. 1. One-line diagram for Problem 1.

<i>G</i> :	50 MVA	20 kV	X = 8%
T_I :	60 MVA	20/200 kV	X = 12%
T_2 :	60 MVA	200/20 kV	X = 12%
<i>M</i> :	50.77 MVA	19 kV	X = 9%
Line:		200 kV	$Z = 100 + j150 \Omega$

- (1) (10%) Draw an impedance diagram showing all impedances in per-unit on a 100-MVA base. Choose 20 kV as the voltage base for generator.
- (2) (10%) The motor is drawing 40 MVA, 0.80 power factor lagging at a line-to-line terminal voltage of 19 kV. Determine the internal emf of the generator in kV.
- 2. (10%) A 60-Hz, single phase power line and a telephone line are parallel to each other as shown in Fig. 2. The telephone line is symmetrically positioned directly below the middle of the power line. the power line carries a rms current of 300 A. Assume zero current flows in the ungrounded telephone wires. Find the magnitude of the voltage per km induced in the telephone line.

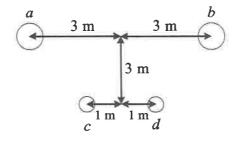


Fig. 2. One-line diagram for Problem 2.

- 3. (20%) A completely transposed 345-kV, three-phase transmission line is 200 km long. The series impedance is $z = 0.036 + j0.3 \,\Omega/\mathrm{km}$ per phase, and the shunt admittance is $y = j4.22 \times 10^{-6}$ S/km per phase. Full load at the receiving end of the line is 700 MW at 0.99 p.f. leading and at 95 % of rated voltage. Use the nominal π model to find:
 - (1) (10%) ABCD parameters of the nominal π model
 - (2) (6%) sending-end voltage $V_{S \text{ (line to neutral)}}$, current I_{S} , real power P_{S}
 - (3) (4%) the voltage regulation

國立臺灣科技大學 114 學年度碩士班招生試題

系所組別:電機工程系碩士班甲組

科 目:電力系統

(總分為100分;所有試題務必於答案卷內頁依序作答)

4. (12%) The one-line diagram of a simple power system is shown in Fig. 3. The ratings and reactances of the generators and transformers are

 G_1 and G_2 : 100 MVA, 20 kV $X''_d = X_1 = X_2 = 12\%$, $X_0 = 5\%$, $X_n = 5\%$

 T_1 and T_2 : 150 MVA, 20/220 kV X=9%

On a chosen base of 100MVA, 220kV in the transmission line circuit, the line reactances of L_{12} are $X_I = X_2 = 13\%$ and $X_0 = 25\%$. The line reactances of L_{13} are $X_I = X_2 = 13\%$ and $X_0 = 32\%$. The line reactances of L_{23} are $X_I = X_2 = 20\%$ and $X_0 = 50\%$. The system is operating at nominal voltage without prefault currents.

A single line-to-ground fault occurs at bus 2 with a fault impedance $Z_f = j0.2$ per unit. Determine the fault current.

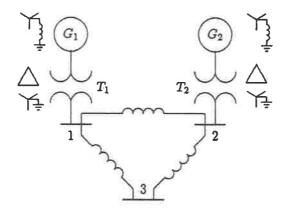


Fig. 3. The one-line diagram for Q4

5. (20%) A two-area power gird with only primary FLC control loop connected by a tie-line has following characteristics.

ne mas tomo wing enaracteris	uos.	
Area	1	2
Speed regulation	$R_l = 0.06$	$R_2 = 0.0625$
Frequency-sen. Load coeff.	$D_{l} = 0.6$	$D_2 = 0.9$
Inertia constant	$H_l = 5$	$H_2 = 4$
Base power	600 MVA	500 MVA
generation range	250~500 MW	200~450 MW
Governor time constant	$\tau_{g1} = 0.2 \text{ sec}$	$\tau_{g2} = 0.3 \text{ sec}$
Turbine time constant	$\tau_{T1} = 0.5 \text{ sec}$	$\tau_{T2} = 0.6 \; \text{sec}$

(1) (8%) The areas are sharing 600 MW at the nominal frequency. Transmission losses are neglected. The incremental costs of units in \$/MWh are given by

$$IC_1 = 5.2 + 0.006P_1$$

$$IC_2 = 5.0 + 0.004P_2$$

Determine the optimal scheduling of generation in area 1 and 2.

(2) (12%) Suppose generation of area 1 and 2 are 260MW and 440MW respectively and operate at 60-Hz. A load change of -100 MW occurs in area 2. Determine the new steady-state frequency and the new generations for each area.

國立臺灣科技大學 114 學年度碩士班招生試題

系所組別:電機工程系碩士班甲組

科 目:電力系統

(總分為100分;所有試題務必於答案卷內頁依序作答)

- 6. (18%) A 60-Hz synchronous generator having inertia constant H= 5.5 MJ/MVA and a direct axis transient reactance $X'_d = 0.32$ per unit is connected to infinite bus through a purely reactive circuit as shown in Fig. 4. Reactances are marked on the diagram on a common system base. The generator is delivering real power $P_e = 0.8$ per unit, 0.8 power factor lagging, to the infinite bus at a voltage of V = 1 per unit. The per unit damping power coefficient is D = 0.12.
- (1) (10%) A temporary three-phase fault occurs at the sending end of the line at point F. When the fault is cleared, both lines are intact. Find the critical clearing power angle.
- (2) (8%) Consider a small disturbance of $\Delta \delta = 20^{\circ}$. For example, the breaker open and then quickly close. Obtain and plot the equation describing the motion of the generator frequency (Hz) during swinging.

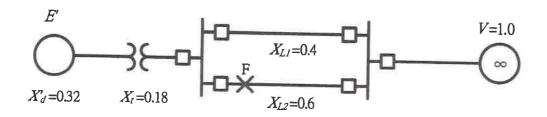


Fig. 4. The one-line diagram for Q6

Hint:

Natural frequency (rad/s)
$$\omega_n = \sqrt{\frac{\pi f_0}{H}} P_s \qquad \text{eq(1)}$$
 Synchronizing power coefficient
$$P_s = \frac{dP}{d\delta} \Big|_{\delta_0} \qquad \text{eq(2)}$$
 Damped frequency
$$\omega_d = \omega_n \sqrt{1 - \zeta^2} \qquad \text{eq(3)}$$
 Dimensionless damping ratio
$$\zeta = \frac{D}{2} \sqrt{\frac{\pi f_0}{H P_s}} \qquad \text{eq(4)}$$
 Deviation of frequency
$$\Delta \omega = -\frac{\omega_n \Delta \delta_0}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \sin \omega_d t \qquad \text{eq(5)}$$

