# 國立臺灣科技大學 114學年度碩士班招生

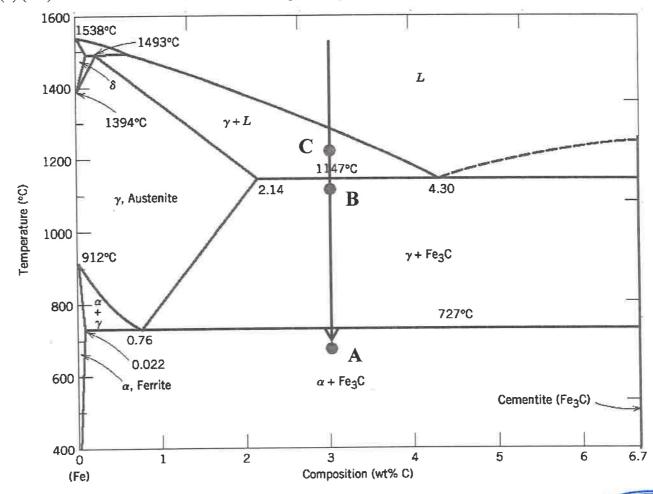
# 試題

系所組別:0350機械工程系碩士班戊組

科 目:材料原理

<<503501>>




#### 國立臺灣科技大學 114 學年度碩士班招生試題

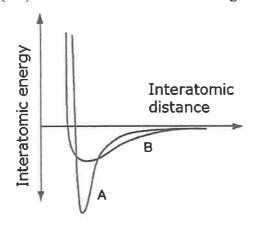
系所組別:機械工程系碩士班戊組

科 目:材料原理

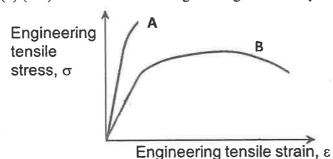
# (總分為100分;所有試題務必於答案卷內頁依序作答)

- 1. (25%) A free aluminium (Al) atom has a radius of 1.43 x 10<sup>-8</sup> cm and atomic mass of 26.98 g/mol. With the three outermost electrons removed, the radius shrinks to 39 pm for a 4-coordinated atom or 53.5 pm for a 6-coordinated atom. At standard temperature and pressure, aluminium atoms (when not affected by atoms of other elements) form a face-centered cubic (FCC) crystal system bound by metallic bonding provided by atoms' outermost electrons; hence aluminium (at these conditions) is a metal.
  - (a) (5%) Please draw a FCC for a Al metal.
  - (b) (5%) What is the coordination number of Al in a FCC structure?
  - (c) (5%) What is the atomic packing factor of FCC-Al? A calculation process is needed.
  - (d) (10%) What is the density (g/cm³) of FCC-Al? A calculation process is needed.
- 2. (10%) 請說明下列反應式中,哪個物質中的哪個元素(或離子)發生氧化(oxidation)反應?哪個物質中的哪個元素(或離子)發生還原(reduction)反應?
  - (a) (5%)  $2MgCl_2 + O_2 \rightarrow 2MgO + 2Cl_2$
  - (b) (5%)  $Pb + PbO_2 + 2H_2SO_4 \rightarrow 2PbSO_4 + 2H_2O$
- 3. (5%) 請描述單晶、多晶和非晶固體之間的微結構差異。
- 4. (10%) A phase diagram of Fe-C alloy with the composition of 3 wt.% C is shown below.
  - (a) (5%) What compositions are all the phases present for the point A marked in the Fe-C diagram?
  - (b) (5%) Calculate the relative fractions of the present phases for the same point A marked.




## 國立臺灣科技大學 114 學年度碩士班招生試題

系所組別:機械工程系碩士班戊組


科 目:材料原理

## (總分為100分;所有試題務必於答案卷內頁依序作答)

- 5. (10%) Magnesium (Mg) and Zirconium dioxide (ZrO<sub>2</sub>) are common engineering materials. Their interatomic energy curves are shown in the following Figure. Please answer the following questions:
  - (a) (5%) Which curve in the Figure does ZrO<sub>2</sub> belong to? Please explain briefly.
  - (b) (5%) Which material will have the higher thermal expansion coefficient? Please explain briefly.



- 6. (10%) When Al<sub>2</sub>O<sub>3</sub> (as an impurity) is added into MgO, Al<sup>3+</sup> ion will substitute Mg<sup>2+</sup> ion.
  - (a) (5%) What kind of point defects are possibly formed in order to maintain charge neutrality?
  - (b) (5%) How many Al<sup>3+</sup> ions must be added to form each of these defects?
- 7. (10%) The stress-strain curves are shown below for metal A and B. The specimens used in the tensile test have the same diameter and length. Please answer the following questions.
  - (a) (5%) Which one has the higher modulus of elasticity? Why?
  - (b) (5%) Which one shows higher toughness? Why?



- 8. (20%) If you are an engineer responsible for 12-inch silicon single crystal growing,
  - (a) (10 points) how do you grow a P-type Si single crystal and a n-type Si single crystal? You have elements
  - (B, Ge, P) to choose as the dopant. Can you explain which element is a donor and which is an acceptor? Please explain why the crystal is P-type or n-type?
  - (b) If you fabricate a p-n junction, and you apply a forward-bias and/or a reverse bias, What is the voltage-current curve for this device? Please explain schematically. (5 points)
  - (c) Can you use an energy band structure to describe the energy level of a p-type and/or n-type semiconductor? (5 points)