國立臺灣科技大學 114學年度碩士班招生

試題

系所組別:0330機械工程系碩士班丙組

科 目:工程數學

<<503301>>

國立臺灣科技大學 114 學年度碩士班招生試題

系所組別:機械工程系碩士班丙組

目:工程數學

總分為100分;所有試題務必於答案卷內頁依序作答)

1. (10%) Saying that y is a function of x, solve the following initial value problem,

$$\frac{dy}{dx} = -4x^2y$$
$$y(0) = 2$$

2. (20%) Given an ODE,

$$\frac{d^3y}{dx^3} + 3\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + y = 30e^{-x}$$

- (a) Find the homogeneous solution (10%).
- (b) Find the particular solution (10%).
- 3. (20%) Laplace transform is a useful tool for solving transient heat transfer problems. Let's define the Laplace transform $\mathcal{L}[f(t)] = \int_0^\infty f(t) e^{-st} dt$, where t is time, s is the Laplace transform variable.
 - (a) Show that $\mathcal{L}(f') = s\mathcal{L}(f) f(0)$ (5%).
 - (b) Show that $\mathcal{L}\left(f''\right)=s^{2}\mathcal{L}\left(f\right)-sf\left(0\right)-f'\left(0\right)$ (5%).
 - (c) Find the Laplace transform of $f(t) = t \sin at$, where a is a constant. Hint: $\mathcal{L}(\cos at) = s/(s^2 + a^2)$ (10%).
- 4. (10%) Consider the plane curve $y=y(x), 0 \leq x \leq 1$, calculate the curvature of the curve y = y(x) (5%). What would you get if y' << 1 (5%)?
- 5. (20%) Fourier transform is an important technique in engineering. Please answer the following questions regarding the Fourier transform:
 - (a) Write down the definition of the Fourier transform $F(\omega)$ of the time-domain function f(t)
 - (b) Write down the corresponding inverse Fourier transform theorem (No proof is needed!)(5%).
 - (c) Let

$$f(t) = \left\{ egin{array}{ll} 1 & -T \leq t \leq T \\ 0, & |t| > T \end{array}
ight.$$

calculate the corresponding Fourier transform $F(\omega)$ (5%).

(d) Evaluate the following improper integral (5%):

$$\int_{-\infty}^{\infty} \frac{\cos(2\omega)\sin(3\omega)}{\omega} d\omega$$

6.~(20%) Use the method of separation of variables to solve the following equilibrium equation:

$$\begin{split} u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} &= 0 & 0 < r < 1, 0 < \theta < \frac{\pi}{2} \\ u_{\theta}(r,0) &= 0 & 0 \le r \le 1 \\ u_{\theta}\left(r,\frac{\pi}{2}\right) &= 0 \\ u_{r}(1,\theta) &= f(\theta) & 0 \le \theta \le \frac{\pi}{2}, \end{split}$$

where $f(\theta) = \cos(2\theta)$ (15%). What kind of constraint must be imposed on the function $f(\theta)$ if the problem is solvable? In other words, what would happen if $f(\theta) = \sin(2\theta)$? (5%)

