國立臺灣師範大學 114 學年度碩士班招生考試試題

科目:高等微積分 適用系所:數學系

注意:1.本試題共1頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則依規定扣分。

- 1. (10 \Re) Let E be a nonempty bounded subset of \mathbb{R} and $\alpha = \sup E$. Show that there is an increasing sequence $x_1, x_2, \dots, x_n, \dots$ in E such that $\lim_{n \to \infty} x_n = \alpha$.
- 2. (10 分) Determine the limit:

$$\lim_{x \to \infty} \left(\sqrt{x^2 + x + 1} - \sqrt{x^2 - x + 1} \right).$$

- 3. (10 \Re) Let C be a compact set in a metric space (M,d). Show that C is bounded and closed.
- 4. (10 \Re) Consider the function $f(x) = \frac{x^2}{1+x^2}$ for $x \in \mathbb{R}$. Is f uniformly continuous on \mathbb{R} ? Justify your answer.
- 5. (10 \Re) Let f,g be two differentiable real functions on \mathbb{R} . Suppose that f'(x) = g(x) and g'(x) = -f(x) for all $x \in \mathbb{R}$. Show that $h(x) = (f(x))^2 + (g(x))^2$ is a constant function on \mathbb{R} .
- 6. (10 分) Evaluate the infinite series: $\sum_{k=1}^{\infty} \frac{1}{k(k+2)(k+3)}.$
- 8. (10 \Re) Find the radius R of convergence for the power series $\sum_{n=1}^{\infty} C_n^{2n} x^n$. Does the series converge at x = R? (Remark. $C_n^{2n} = \frac{(2n)!}{(n!)^2}$ is the binomial coefficient.)
- 9. (10 分) For any continuous function f on [0,1], define

$$F(y) = \int_0^1 f(x) \cos(xy) dx, \qquad 2 < y < 4.$$

Show that F is differentiable in the open interval (2,4).

10. (10 \Re) Let $B = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1\}$ be the solid unit ball in \mathbb{R}^3 . Evaluate the triple integral:

$$\iiint_B x^2 \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z.$$

(試題結束)