# 國立臺灣師範大學 114 學年度碩士班招生考試試題

科目:基礎數學

適用系所:數學系

注意:1.本試題共2頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則依規定扣分。

### Part I: Calculus (無計算過程或說明不給分,總分 50 分)

- 1. Do the following two questions.
  - (a) (6 pts) Explain why the improper integral  $\int_2^\infty (\frac{x+2}{x-1})^x dx$  is divergent.
  - (b) (6 pts) Evaluate the limit  $\lim_{x\to\infty} \frac{\int_2^x (\frac{t+2}{t-1})^t dt}{x}$ .
- 2. Let  $f(x) = (\ln x)(\ln(\ln x)) 1$ .
  - (a) (4 pts) Find the domain of f.
  - (b) (4 pts) Find the open interval where the graph of f is increasing.
  - (c) (5 pts) Show that f has exactly one zero in its domain.
- 3. (9 pts) Find the maximum value of the function f(x, y, z) = x + 2y + 3z on the curve of intersection of the plane x y + z = 1 and the cylinder  $x^2 + y^2 = 1$ .
- 4. (8 pts) Compute the integral  $\int_0^1 \int_0^{1-x} \sqrt{x+y} (y-2x)^2 dy dx$ .
- 5. (8 pts) Let  $(r, \theta)$  be the polar coordinate. Find the area of the region bounded by the two curves:  $r = 1 \cos \theta$  and  $r = 1 + \cos \theta$ .

(尚有試題)

## 國立臺灣師範大學 114 學年度碩士班招生考試試題

### Part II. Linear Algebra (總分 50 分)

1. (24 pts) Let  $\{\mathbf{b}_1, \dots, \mathbf{b}_5\}$  and  $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$  be the standard basis for  $\mathbb{R}^5$  and  $\mathbb{R}^3$  respectively. Let  $T: \mathbb{R}^5 \to \mathbb{R}^3$  be a linear transformation satisfying

$$T(\mathbf{b}_1) = \mathbf{e}_1 + 6\,\mathbf{e}_3, \ T(\mathbf{b}_2) = -\mathbf{e}_1 + 2\,\mathbf{e}_2 \ \text{and} \ T(\mathbf{b}_4) = 3\,\mathbf{e}_1 - 4\,\mathbf{e}_2 + 5\,\mathbf{e}_3.$$

Suppose that T is defined by  $T(\mathbf{x}) = A\mathbf{x}$  for some  $3 \times 5$  matrix A and that the reduced row echelon form of A is given as follows:

$$R = \begin{bmatrix} 1 & 0 & -1 & 0 & 1 \\ 0 & 1 & -2 & 0 & 6 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}.$$

- (a) Find a basis for the null space of T.
- (b) Find the matrix A.
- (c) Show that there exists a linear transformation  $S: \mathbb{R}^3 \to \mathbb{R}^5$  such that  $T \circ S: \mathbb{R}^3 \to \mathbb{R}^3$  is the identity transformation on  $\mathbb{R}^3$ . Is S unique? You need to explain or verify your answer.
- 2. (12 pts) Let  $T: \mathbb{R}^n \to \mathbb{R}^m$  be a linear transformation of rank r and let  $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$  be a basis for  $\mathbb{R}^n$ . Define  $\mathcal{N} = \{(a_1, \dots, a_n) \mid a_1 T(\mathbf{v}_1) + a_2 T(\mathbf{v}_2) + \dots + a_n T(\mathbf{v}_n) = \mathbf{0}_m\}$  where  $\mathbf{0}_m$  denotes the zero vector of  $\mathbb{R}^m$ .
  - (a) Show that  $\mathcal{N}$  is a subspace of  $\mathbb{R}^n$  and that dim  $\mathcal{N} = n r$ .
  - (b) Let R be the range of T and let I be any linear independent subset of  $\mathbb{R}^m$ . Show that  $|I \cap R| \leq r$  where |A| denotes the number of elements in the set A.

3. (14 pts) Let 
$$A = [a_{ij}]$$
 be an  $n \times n$  matrix where  $a_{ij} = \begin{cases} 5, & \text{if } i = j; \\ 3, & \text{if } i - j = 1; \\ 2, & \text{if } j - i = 1; \\ 0, & \text{otherwise.} \end{cases}$ 

That is 
$$A = \begin{bmatrix} 5 & 2 & 0 & \dots & 0 \\ 3 & 5 & 2 & & \vdots \\ 0 & 3 & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & 2 \\ 0 & \dots & 0 & 3 & 5 \end{bmatrix}$$
.

- (a) Find the determinant of A.
- (b) For the case where n=3, determine whether or not A is diagonalizable. You need to explain your answer.

### (試題結束)