國立臺灣大學114學年度碩士班招生考試試題

科目:通信原理

節次: 3

題號: 300

題號:300 共 3 頁之第 1 頁

第一大題「單選題」,請依題號作答於「答案卡」(請勿作答於試卷之選擇題作答區),未作答於答案卡者,該大題不予計分;第二大題爲「非選擇題」,請作答於「試卷」之非選擇題作答區。

一、單選題

1. (5%) The convolution of x(t) and y(t) is denoted by x(t) * y(t). Find the continuous-time Fourier transform of $e^{-|t|} * \cos(20\pi t)$.

(A)
$$\frac{1}{1+(\omega-20\pi)^2}+\frac{1}{1+(\omega+20\pi)^2}$$
.

(B)
$$\frac{2}{1+(\omega-20\pi)^2}+\frac{2}{1+(\omega+20\pi)^2}$$
.

(C)
$$\frac{2\pi}{1+400\pi^2} \left(\delta(\omega-20\pi)+\delta(\omega+20\pi)\right)$$
.

(D)
$$\frac{-j2\pi}{1+400\pi^2} (\delta(\omega-20\pi)-\delta(\omega+20\pi)).$$

(E)
$$\frac{2\pi}{1+400\pi^2} (\delta(\omega-10\pi)+\delta(\omega+10\pi)).$$

- 2. (5%) We consider the following statements:
 - $\{I\}$ The continuous-time system S is linear time-invariant if and only if $e^{j\omega_0 t}$ is an eigenfunction of S for all $\omega_0 \in \mathbb{R}$.
 - $\{II\}$ The discrete-time signal e^{jn} is periodic.
 - $\{III\}$ If a system S is memoryless, then S is causal.

Select a choice that best describes these above statements.

- (A) {I} is true, {II} is false, and {III} is false.
- (B) {I} is true, {II} is true, and {III} is true.
- (C) {I} is true, {II} is false, and {III} is true.
- (D) {I} is false, {II} is true, and {III} is true.
- (E) {I} is false, {II} is false, but {III} is true.
- 3. (6%) Let $\{a_k\}_{k\in\mathbb{Z}}$ be the Fourier series coefficients of a periodic signal x(t) with period T. We consider the truncated signal $x_N(t)$ by $x_N(t) \triangleq \sum_{k=-N}^N a_k e^{j\frac{2\pi kt}{T}}$, where N is a positive integer. The energy in the error is defined

as
$$E_N \triangleq \int_0^T |x(t) - x_N(t)|^2 dt$$
. We have the following statements:

- $\{I\} \lim_{N\to\infty} x_N(t) = x(t) \text{ for all } t\in\mathbb{R}.$
- $\{II\} \lim_{N\to\infty} E_N = 0.$
- {III} The Fourier series coefficients of x(-t) are a_{-k} .

Select a choice that best describes these above statements.

- (A) {I} is true, {II} is true, and {III} is false.
- (B) {I} is true, {II} is true, and {III} is true.
- (C) {I} is false, {II} is true, and {III} is true.
- (D) {I} is true, {II} is false, and {III} is true.
- (E) {I} is false, {II} is false, and {III} is true.
- 4. (5%) We consider a continuous-time, stable, linear time-invariant system with system function

$$H(s) = \frac{1}{(s^2 + 6s + 18)(s + 2)(s + 1)(s - 4)}$$

What is the region of convergence of H(s)?

- (A) $\{s \mid \text{Re}\{s\} < -3\}.$
- (B) $\{s \mid -3 < \text{Re}\{s\} < -2\}$
- (C) $\{s \mid -2 < \text{Re}\{s\} < -1\}.$
- (D) $\{s \mid -1 < \operatorname{Re}\{s\} < 4\}.$
- (E) $\{s \mid \text{Re}\{s\} > 4\}.$
- 5. (6%) We consider the discrete-time signal $x[n] \triangleq \frac{e^{jn^2}}{\sqrt{(|n|+1)(|n|+2)}}$, where $n \in \mathbb{Z}$. The discrete-time Fourier transform of x[n] is $X(e^{j\omega})$. Find the value of the integral $\int_0^{4\pi} \left|X(e^{j\omega})\right|^2 d\omega$.

題號: 300 國立臺灣大學114學年度碩士班招生考試試題

科目:通信原理

題號:300

節次: 3

頁之第 2 頁

(A) π .

(B) 2π .

(C) 3π .

(D) 4π .

(E) 6π .

6. (6%) The discrete-time unit step sequence is denoted by u[n]. We consider the discrete-time signal

$$x[n] = a_1^n u[n] + a_2^n u[n] + a_3^n u[-n] + a_4^n u[-n] + a_5^{-|n|} + a_6^{-|n|},$$

where the parameters

 $a_1 = (1+j)/2,$

 $a_2 = (2 - 5j)/8$

 $a_3 = -2 + j,$ $a_4 = -4 - j,$ $a_5 = 3/2,$

and $n \in \mathbb{Z}$. The z-transform of x[n] is X(z), where $z \in \mathbb{C}$. For $\ell = 1, 2, 3$, we define another discrete-time signal $y_{\ell}[n]$ by $y_{\ell}[n] \triangleq \int_{C_{\ell}} X(z)z^{n-1} dz$, where the contour C_{ℓ} evaluated counterclockwise are given as

 $C_1 \triangleq \{z \mid |z| = 0.6\},\$

 $C_2 \triangleq \{z \mid |z| = 0.8\},\$

The error is defined as $\mathcal{E}_{\ell} \triangleq \sum_{n=-\infty}^{\infty} |j2\pi x[n] - y_{\ell}[n]|^2$. Which of the following relation is true?

 $(A) \ \mathcal{E}_1 = \mathcal{E}_2 = \mathcal{E}_3. \qquad (B) \ \mathcal{E}_1 > \mathcal{E}_2 = \mathcal{E}_3. \qquad (C) \ \mathcal{E}_1 = \mathcal{E}_2 > \mathcal{E}_3. \qquad (D) \ \mathcal{E}_2 > \mathcal{E}_1 = \mathcal{E}_3. \qquad (E) \ \mathcal{E}_2 = \mathcal{E}_3 > \mathcal{E}_1.$

7. (6%) A causal linear time-invariant discrete-time system S has the transfer function

$$H(z) \triangleq \frac{(z+2)(z+4)}{(z-1)(z-2)(z-3)}.$$

The impulse response of S is h[n]. The input signal is x[n] while the output signal is y[n]. We consider the following

 $\{I\}$ The system S is unstable.

 $\{II\} \lim_{n\to\infty} \frac{h[n]}{3^n} = 0.$

 $\{III\}$ The system S can be described by the difference equation

$$y[n] - 6y[n-1] + 11y[n-2] - 6y[n-3] = x[n] + 9x[n-1] + 8x[n-2].$$

Select a choice that best describes these above statements.

- (A) {I} is true, {II} is true, and {III} is true.
- (B) {I} is true, {II} is false, and {III} is false.
- (C) {I} is true, {II} is false, and {III} is true.
- (D) {I} is true, {II} is true, and {III} is false.
- (E) {I} is false, {II} is true, and {III} is false.
- 8. (5%) Let x(t) be a bandlimited signal. Which of the following signals has the same bandwidth as x(t)?

(A) 8x(t-3).

(B) $x(t^2-5)$.

(C) $\sin(x(t))$.

(D) $|x(t)|^2$.

(E) x(2t+4).

9. (6%) Let the $x_c(t)$ be a continuous-time signal whose continuous-time Fourier transform is $X_c(j\omega)$. It is assumed that $X_c(j\omega) = 0$ if $|\omega| > 1000\pi$. The discrete-time signal $x[n] \triangleq x_c(nT_1)$ for some $T_1 > 0$. We define the reconstructed signal as

$$x_r(t) \triangleq \frac{T_1}{\pi} \sum_{n=-\infty}^{\infty} x[n] \frac{\sin\left(\frac{2\pi}{T_2}(t-nT_1)\right)}{t-nT_1},$$

where $T_2 > 0$. Select a sufficient condition such that $x_r(t) = x_c(t)$ for all $x_c(t)$.

(A)
$$T_1 = \frac{1}{800}, T_2 = \frac{1}{400}$$

(B)
$$T_1 = \frac{1}{800}, T_2 = \frac{1}{500}.$$

(C)
$$T_1 = \frac{1}{1200}, T_2 = \frac{1}{400}.$$

(D)
$$T_1 = \frac{1}{1200}, T_2 = \frac{1}{600}$$

(E)
$$T_1 = \frac{1}{1200}, T_2 = \frac{1}{800}.$$

接次頁

國立臺灣大學114學年度碩士班招生考試試題

科目:通信原理

節次: 3

題號: 300

題號:300 共 3 頁之第 3 頁

Part 2: Please simplify your answers as much as possible and write down detailed steps

10. Two equal-probability messages with indexes j are mapped into symbol waveforms as

$$S(t,j) = \begin{cases} d\sqrt{2}\operatorname{sinc}(2t) & \text{if } j = 1\\ d\sqrt{2}\operatorname{sinc}(2t)\sin(\pi t) & \text{if } j = 2 \end{cases}$$

where d is a positive real number. Assume there is an additive noise in the channel. (a) (5%) Assume the noise is an additive white Gaussian noise with power spectrum $S_N(f) = \sigma^2$, please find the decision regions of the optimal receiver, which minimizes the symbol error probability.

(b) (8%) Please find the symbol error probability of your answer in (a)

(c) (12%) Repeat (a) for the case where the additive noise is still Gaussian but with autocorrelation function $\frac{\sigma^2}{2} \exp(-|\tau|)$.

11. In binary (n; k) linear code, a k-bit message is represented as a $1 \times k$ binary vector **b**, and the n-bit binary codeword **c**_b is encoded from message **b** via a linear transformation as

$$c_b = bG$$

where $k \times n$ binary matrix G the "generator matrix" of this code and the matrix multiplication is in binary finite field.

(a) (5%) We collect all possible codewords generated from G as a codebook C, show that for any two codewords $c_{b,i} \in C, i = 1, 2$, the finite-field (modulo-2) addition of them is a valid binary codeword belongs to C

(b) (10%) Prove that for any binary (n; k) linear code that can correct up to E binary errors in its codeword, integers n, k, E must satisfy the inequality

$$2^{n-k} \ge \sum_{t=0}^{E} \binom{n}{t}$$

where combinatorial number $\binom{n}{t}$ is defined as n!/(t!(n-t)!).

(c) (10%) Let E=0.1n, from (b) prove that when $n\to\infty$, the maximum possible rate $\log_2(k/n)$ approaches 1-H(0.1) where $H(x)=-(x\log_2(x)+(1-x)\log_2(1-x))$. You can use the following large n approximation : $n!\approx\sqrt{2\pi n}(n/e)^n$ where e is the Euler's number.