節次: 7

科目:統計學(I)

國立臺灣大學 114 學年度碩士班招生考試試題

題號: 272

共 6 頁之第

※ 注意:請用 2B 鉛筆作答於答案卡,並先詳閱答案卡上之「畫記說明」。

本試卷全部為多重選擇題,每題5分;每題答案可能不只一個,考生應作答於『答案卡』

- 1. Given two random variables, x and y with finite second moments, which of following statement(s) about independence is correct?
 - (a) If x and y are independent with each other, then they are uncorrelated.
 - (b) If x and y are uncorrelated with each other, then they are definitely independent of each other.
 - (c) If $P(x=a \mid y=b)=P(y=b)$ then x and y are independent of each other.
 - (d) If E(x | y) is a constant, then x and y are independent of each other.
- 2. A random variable $x \sim N^+(0, \sigma^2)$, where N^+ is a half-normal distribution that x is always positive and has a pdf, then we know:

(a)
$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{x^2}{2\sigma^2}\right), -\infty < x < \infty$$
.

(b)
$$f(x) = \frac{\sqrt{2}}{\sqrt{\pi}\sigma} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$
, $0 < x < \infty$.

(c)
$$E(x) = \sqrt{\frac{\sigma^2}{\pi}}$$
.

- (d) $Var(x) > \sigma^2$.
- 3. Which of following statement(s) about the Central Limit Theorem (CLT) is correct?
 - (a) If $p\lim \bar{x} = \mu_x$, then CLT is held.
 - (b) If N>30, then $\bar{x} \stackrel{\wedge}{\sim} N(\mu_x, \sigma^2)$ under the conditions that the random variable x has finite mean and
 - (c) If N>30, then $\bar{x} \sim N(\mu_x, \frac{\sigma^2}{30})$ under the conditions that the random variable x has finite mean and
 - (d) \bar{x} does not converge to normal distribution if x is a random walk process: $x_t = x_{t-1} + x_{t$ $w_t, w_t \sim N(0, 1).$
- 4. Given cdf of a random variable x: $F_{x}(a) = \frac{a^{2}}{36}$, then we have...
 - (a) The pdf $f_x(a) = \frac{a}{18}, 0 \le a \le 6$.
 - (b) E(x) = 4.
 - (c) $E(x^2) = 2$
 - (d) Var(x) = 2
- 5. Let $u = (x b)^2$, x is a random variable and $E[(x b)^2]$ exists. Which of following statement(s) is correct?
 - (a) E(u) is minimal when b=0.
 - (b) When b=0, u is the variance of x.
 - (c) E(u) is minimal when b=E(x).
 - (d) When b=E(x), u is the variance of x.
- 6. A random sample $\{x_1, x_2, \dots, x_N\}$ is sampled, where $x \in \mathcal{N}(\mu_x, \sigma_i^2)$, which means x is independent distributed to a normal distribution (note that heteroskedasticity exists). A point estimator is calculated as $\tilde{x} = \sum_{i=1}^{N} a_i x_i$; $\sum_{i=1}^{N} a_i = 1$. Then which of following statement(s) is correct.
 - (a) \tilde{x} is unbiased to μ_x .

科目:統計學(I)

國立臺灣大學 114 學年度碩士班招生考試試題

題號: 272

共 6 頁之第 2-頁

- (b) \tilde{x} is a best linear unbiased estimator of μ_x .
- (c) \tilde{x} is a best unbiased estimator of μ_x .
- (d) \tilde{x} is a consistent estimator of μ_x , if $a_i=1/N$.
- 7. A random sample $\{x_1, x_2, \dots, x_N\}$ is sampled, where $x^{i.i.d.}N(\mu_x, \sigma^2)$. We define a downside standard deviation of x as $\hat{\sigma}_x^d = \sqrt{\frac{1}{N}\sum_{i=1}^N \max(0, -x_i)^2}$, and $\hat{\sigma}_x = \sqrt{\frac{1}{N}\sum_{i=1}^N (x_i \mu_x)^2}$ is the classical standard deviation. Then we will obtain:
 - (a) $\hat{\sigma}_x^d > \hat{\sigma}_x$.
 - (b) $\hat{\sigma}_x^d < \hat{\sigma}_x$.
 - (c) $\hat{\sigma}_x^d$ becomes larger when x is more positive skewed.
 - (d) Both of $\hat{\sigma}_x^d$ and $\hat{\sigma}_x$ are biased estimators of population standard deviation σ .
- 8. A random variable $x \sim (\mu_x, 1)$, according to Chebyshev inequality, the lower bound of $P(\{|x \mu_x| < 2\})$ is
 - (a) 0
 - (b) 0.75
 - (c) 0.95
 - (d) 0.99
- 9. Two random variables x and y have following relations: $y = b_0 + b_1 x + u$, and $x = a_0 + a_1 y + v$. Error terms u and v are independent of each other, which both obey standardized normal distribution. We can know...
 - (a) OLS estimator \hat{b}_1 is a consistent estimator.
 - (b) If $b_1 > 0$ and $a_1 > 0$, then OLS estimator \hat{b}_1 is downward inconsistent.
 - (c) If $b_1 > 0$ and $a_1 < 0$, then OLS estimator \hat{b}_1 is downward inconsistent.
 - (d) If $b_1 > 1$ and $a_1 > 0$, then OLS estimator \hat{b}_1 is upward inconsistent.
- 10. Using following OLS estimations (see table below) for regression model $Y_i = b_0 + b_1 X_i + b_2 D_i + b_3 X_i D_i + u_i$, in which X is a continuous variable, and D is a binary variable, please answer which of following statement(s) is correct?

				ANOVA				
Summary statistics					DF	SS	MS	F
R-sq	0.90	Mean of Y	1	Regression	3	345.61	115.20	135.53
Adj. R-sq	0.89	Mean of X	0	Residual	46	39.10	0.85	100.00
N	50	Mean of D	0.6	Sum	49	384.71		
		Mean of X*D	0.02					_

	Coeff	SD	t-stat
Intercept	1.14	0.21	5.51
X	1.80	0.27	6.74
D	-0.24	0.27	-0.91
X*D	1.44	0.32	4.53

- (a) Average marginal effect for a unit increase in X is 1.8,
- (b) Average marginal effect for a unit increase in X is 2.66.
- (c) The mean squared error of $Y_i = b_0 + b_1 X_i + b_2 D_i + b_3 X D_i + u_i$ is smaller than a simple linear regression model: $Y_i = \beta_0 + \beta_1 X_i + v_i$
- (d) $\widehat{Cov(X,D)} \cong 0.02$.

國立臺灣大學 114 學年度碩士班招生考試試題

題號: 272 科目:統計學(I)

節次: 7

題號: 272 共 6 頁之第 **3** 頁

11. Let $\{(X_i, Y_i)'\}_{i=1}^q$ be a sequence of independently and $N(0, I_2)$ -distributed random vectors. Define the random variable:

$$Z_i(q) = \frac{X_i}{\sqrt{\sum_{i=1}^{q} Y_i^2/q}}.$$

Which of the following is right?

- (a) $\mathbb{E}[Z_i(q)] = 0$.
- (b) $\mathbb{E}[Z_i^3(q)] = 0$.
- (c) $\mathbb{E}[Z_i^4(q)] = 3$, as $q \to \infty$.
- (d) $\mathbb{E}[Z_i^6(q)] = 15$, as $q \to \infty$.
- 12. Let $(Y_1, Y_2, ..., Y_n)'$ be a random vector with the distribution $N(0, \Sigma)$ and the covariance matrix:

for some $\rho > 0$ and $n \ge 3$. Define the sample average:

$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i.$$

Which of the following is right?

- (a) $var[\bar{Y}] = \frac{1}{n} + 2\sum_{i=1}^{n} (1 \frac{i}{n})\rho^{i}$.
- (b) $\lim_{n\to\infty} \text{var}[\bar{Y}] = 0$.
- (c) $var[n^{1/2}\bar{Y}] < 1 + 2\sum_{i=1}^{n} (1 \frac{i}{n}) \rho^{i}$.
- (d) $\lim_{n\to\infty} \text{var}[n^{1/2}\bar{Y}] = 1$, if $\rho = n^{-1/2}$.
- 13. Let X be a $\chi^2(k)$ -distributed random variable, and Y be a N(0, 1)-distributed random variable. Suppose that X and Y are independent. Define the random variable:

$$W = X^{1/2}Y.$$

Which of the following is right?

- (a) $\mathbb{E}[W^4] = 15$, if k = 1.
- (b) $\mathbb{E}[W^4] = 30$, if k = 2.
- (c) $\mathbb{E}[W^4] = 45$, if k = 3.
- (d) None of the above choices (a)-(c).

科目:統計學(I)

國立臺灣大學 114 學年度碩士班招生考試試題

共 6 頁之第

節次:

14. Let $\{(X_i, Z_i)'\}_{i=1}^n$ be a sequence of independently and $N(0, \Sigma)$ -distributed random vectors, with the covariance matrix:

$$\Sigma = \left[egin{array}{cc} 1 &
ho \
ho & 2 \end{array}
ight],$$

for some constant $\rho > 0$. Define the random variable:

$$Y_i = X_i^2 + Z_i,$$

for all i's. Consider a linear regression:

$$Y_i = \beta_0 + \beta_1 X_i + e_i,$$

where (β_0, β_1) is a parameter vector, and e_i is an error term, for all i's. Let $(\hat{\beta}_0, \hat{\beta}_1)$ be the ordinary least squares estimator of (β_0, β_1) . Which of the following estimators is consistent for ρ , as $n \to \infty$?

(a)
$$\hat{\rho} = \hat{\beta}_1$$
.

(b)
$$\hat{\rho} = \hat{\beta}_1 + 29 (\hat{\beta}_0 - 1)$$
.

(c)
$$\hat{\rho} = (\hat{\beta}_1 - \hat{\beta}_0)^2$$
.

- (d) None of the above choices (a)-(c).
- 15. Let $\{X_i\}_{i=1}^n$ be a sequence of independently and N(1,2)-distributed random variables. Define the sample average:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

Which of the following statistics has the limiting distribution $\chi^2(1)$, as $n \to \infty$?

- (a) $\frac{n}{2}(\bar{X}^2 2\bar{X} + 1)$.
- (b) $\frac{n}{8}(\bar{X}^4 2\bar{X}^2 + 1)$.
- (c) $\frac{n}{16}(\bar{X}^6 2\bar{X}^3 + 1)$.
- (d) $\frac{n}{32}(\bar{X}^8 2\bar{X}^4 + 1)$.

國立臺灣大學 114 學年度碩士班招生考試試題

科目:統計學(I)

共 6 頁之第 5 頁

節次: 7

16. Let $\{(Y_i, X_{1i}, X_{2i})'\}_{i=1}^n$ be a sequence of independently and $N(0, \Sigma)$ -distributed random vector, where Σ is a 3×3 covariance matrix. Consider the following two regressions:

$$Y_i = \beta_0 + \beta_1 X_{1i} + e_{1i}$$

and

$$Y_i = b_1 X_{1i} + b_2 X_{2i} + e_{2i},$$

for all i's, with the parameters: β_0 , β_1 , b_1 and b_2 and the error terms: e_{1i} and e_{2i} . Let $(\hat{\beta}_0, \hat{\beta}_1)$ and (\hat{b}_1, \hat{b}_2) be the ordinary least squares estimators of (β_0, β_1) and (b_1, b_2) , respectively. Also, define the following two coefficients of determination:

$$R_1^2 = \frac{\sum_{i=1}^n (\hat{Y}_{1i} - \bar{\hat{Y}}_1)^2}{\sum_{i=1}^n (Y_i - \bar{Y})^2}$$

and

$$R_2^2 = \frac{\sum_{i=1}^n (\hat{Y}_{2i} - \bar{\hat{Y}}_{2})^2}{\sum_{i=1}^n (Y_i - \bar{Y})^2},$$

where $\bar{Y} = n^{-1} \sum_{i=1}^{n} Y_i$, $\hat{Y}_{1i} = \hat{\beta}_0 + \hat{\beta}_1 X_{1i}$, $\hat{Y}_{2i} = \hat{b}_1 X_{1i} + \hat{b}_2 X_{2i}$, $\bar{\hat{Y}}_1 = n^{-1} \sum_{i=1}^{n} \hat{Y}_{1i}$ and $\bar{\hat{Y}}_2 = n^{-1} \sum_{i=1}^{n} \hat{Y}_{2i}$. Denote $\hat{e}_{1i} := Y_i - \hat{Y}_{1i}$ and $\hat{e}_{2i} := Y_i - \hat{Y}_{2i}$. Which of the following is right?

(a)
$$R_1^2 = 1 - \frac{\sum_{i=1}^n \hat{e}_{1i}^2}{\sum_{i=1}^n (Y_i - Y)^2}$$
.

(b)
$$R_2^2 = 1 - \frac{\sum_{i=1}^n \hat{e}_{2i}^2}{\sum_{i=1}^n (Y_i - Y_i)^2}$$
.

(c)
$$R_1^2 \neq 1 - \frac{\sum_{i=1}^n \hat{e}_{1i}^2}{\sum_{i=1}^n (Y_i - \hat{Y})^2}$$

(d)
$$R_2^2 \neq 1 - \frac{\sum_{i=1}^n \hat{e}_{2i}^2}{\sum_{i=1}^n (Y_i - Y_i)^2}$$
.

- 17. Let (X, Y, Z)' be a random vector with the distribution $N(0, I_3)$. According to the Cauchy-Schwarz inequality, which of the following results is right?
 - (a) $\mathbb{E}|XY| \leq 1$.
 - (b) $\mathbb{E}|XY^2| \le \sqrt{3}$.
 - (c) $\mathbb{E}|X^2Z^2| \leq 3$.
 - (d) $\mathbb{E}|X^2Y^3Z^3| \le 15\sqrt{3}$
- 18. Let $\{(W_i, X_i, Y_i, Z_i)'\}_{i=1}^n$ be a sequence of random vectors that satisfies the following properties:

$$W_{i} = X_{i}^{2} + Y_{i}^{2} + Z_{i}^{2},$$

$$\begin{bmatrix} Y_{i} \\ Z_{i} \end{bmatrix} X_{i} \sim N \begin{pmatrix} \begin{bmatrix} X_{i} \\ X_{i}^{2} \end{bmatrix}, \begin{bmatrix} X_{i}^{2} & X_{i}^{3} \\ X_{i}^{3} & X_{i}^{4} \end{bmatrix}$$

and X_i is N(0,1)-distributed, for all i's. Consider a linear regression:

$$W_i = \alpha_0 + \alpha_1 X_i + \alpha_2 X_i^2 + \alpha_3 X_i^3 + \alpha_4 X_i^4 + e_i$$

where $(\alpha_0, \alpha_1, \alpha_2, \alpha_3, \alpha_4)$ is a parameter vector, and e_i is an error term, for all i's Also, let $(\hat{\alpha}_0, \hat{\alpha}_1, \hat{\alpha}_2, \hat{\alpha}_3, \hat{\alpha}_4)$ be the ordinary least squares (OLS) estimator of $(\alpha_0, \alpha_1, \alpha_2, \alpha_3, \alpha_4)$. Which of the following is the probability limit of $(\alpha_0, \alpha_1, \alpha_2, \alpha_3, \alpha_4)$, as $n \to \infty$?

- (a) (0,0,2,0,4).
- (b) (0,2,0,3,4).
- (c) (0,0,3,0,2).
- (d) None of the above choices (a)-(c).

國立臺灣大學 114 學年度碩士班招生考試試題

共 6 頁之第 6

科目:統計學(I) 節次: 7

> 19. Let $\{X_i\}_{i=1}^n$ be a sequence of independently and U(0,1)-distributed random variables. Define the statistic:

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(X_i \le x),$$

for some fixed $x \in (0,1)$, where $\mathbf{1}(A)$ is the indicator function which equals one if A is true (otherwise, zero). Which of the following is right?

- (a) The limiting distribution of $n^{1/2}(F_n(x)/x-1)$ is N(0,1/x-1), as $n\to\infty$.
- (b) The probability limit of $2F_n(x) 1$ is 2x 1, as $n \to \infty$.
- (c) The limiting variance of $n^{1/2}(F_n(x)/x^2-1/x)$ is $1/x^3-1/x^2$, as $n\to\infty$.
- (d) The probability limit of $F_n(x)(1-F_n(x))$ is the same as the limiting variance of $n^{1/2}(F_n(x)-x)$, as $n\to\infty$.
- 20. Let $\{(X_i, e_i)'\}_{i=1}^n$ be a sequence of independently and identically distributed random vectors with the properties: $X_i \sim N(0,1)$ and

$$e_i|X_i \sim N(0, X_i^2).$$

Define the random variable:

$$Y_i = \beta X_i + e_i,$$

where β is a constant, for all i's. Which of the following is right?

- (a) The statistic $\frac{\sum_{i=1}^{n} X_i Y_i}{\sum_{i=1}^{n} X_i^2}$ is consistent for β , as $n \to \infty$.
- (b) The statistic $\frac{\sum_{i=1}^{n} X_{i}^{2} Y_{i}}{\sum_{i=1}^{n} X_{i}^{3}}$ is inconsistent for β , as $n \to \infty$.
- (c) The statistic $\frac{\sum_{i=1}^{n} |X_i|Y_i}{\sum_{i=1}^{n} |X_i|X_i}$ is inconsistent for β , as $n \to \infty$.
- (d) The statistic $\frac{\sum_{i=1}^{n} X_i Y_i |X_i|^{-2}}{\sum_{i=1}^{n} (X_i |X_i|^{-1})^2}$ is not less efficient than $\frac{\sum_{i=1}^{n} X_i Y_i}{\sum_{i=1}^{n} X_i^2}$, as $n \to \infty$.