國立政治大學 114 學年度 碩士班暨碩士在職專班 招生考試試題

第1頁,共2頁

考試科目 統計學 系所別 風險管理與保險學系 考試時間 2月12日(三)第四節

- 1. (30 pts) Please explain the following items.
 - (a) (10 pts) Likelihood Ratio Tests
 - (b) (10 pts) Exponential memoryless
 - (c) (10 pts) Convergence in distribution
- 2. (10 pts) An insurance company models the number of claims it receives in a year using the following distribution. Let X represent the number of claims filed for natural disasters (e.g., earthquakes, hurricanes) in a given year, where:

$$f_X(x)=rac{\lambda^x e^{-\lambda}}{x!},\quad x=0,1,2,\ldots,$$

with $\lambda = 2$. For each claim received, there is a 50% chance that the claim is for damages caused by flooding. Let Y represent the number of flood-related claims in a year. What is the distribution of Y?

(a)
$$f_Y(y) = \frac{e^{-1}2^y}{y!}$$

(b)
$$f_Y(y) = \frac{e^{-2}}{y!}$$

(c)
$$f_Y(y) = \frac{e^{-0.5}0.5^y}{y!}$$

(d)
$$f_Y(y) = \frac{e^{-1}0.5^y}{2y!}$$

- (e) None of the above.
- 3. (10pts) Which of the following statements about the Central Limit Theorem (CLT) is incorrect?
 - (a) The CLT describes the sampling distribution of population mean.
 - (b) When using the CLT, the population from which the data is drawn does not need to follow a normal distribution.
 - (c) When using the CLT, the population from which the data is drawn does not need to consist of continuous data.
 - (d) When using the CLT, the sample size must be sufficiently large.
 - (e) None of the above.

國立政治大學 114 學年度 碩士班暨碩士在職專班 招生考試試題

第2頁,共2頁

考 試 科 目 統計學 系 所 別 無陰管理與保險學系 考 試 時 間 2 月 12 日 (三) 第 四 節

4. (10pts) Let X have a Poisson distribution with mean λ . Find a transformation u(X) so that Var[u(X)] is free of λ , for large values of λ .

Hint: Use Tylor Expansion $u(X) \approx u(\lambda) + [u'(\lambda)](X - \lambda) + \frac{u''(\lambda)}{2}(X - \lambda)^2$, and higher terms can be neglected when λ is large.

5. (20pts) Let X_1, X_2, \ldots, X_n be i.i.d. random variables with cumulative distribution function $F(\cdot)$, and consider the statistic

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \le x),$$

where $I(\cdot)$ is the indicator function.

- (a) (5 points) Prove that $\mathbb{E}[F_n(x)] = F(x)$.
- (b) (10 points) Derive the variance of $F_n(x)$.
- (b) (5 points) Determine whether $F_n(x)$ is the UMVUE (Uniformly Minimum Variance Unbiased Estimator) of F(x). Justify your answer.
- 6. (20 pts) If X_1, \ldots, X_n is a random sample from a geometric distribution

$$P(X = x) = \theta(1 - \theta)^{x - 1} I_{\{1, 2, \dots\}}(x),$$

and assume θ follows a uniform prior on (0,1).

- (a) (10 pts) Find the posterior distribution of θ .
- (b) (10 pts) Determine the Bayes estimator of θ under squared error loss, where the loss function is defined as

$$L(\theta,\delta(X_1,\ldots,X_n))=(\delta(X_1,\ldots,X_n)-\theta)^2.$$

註