國立政治大學 114 學年度 碩士班暨碩士在職專班 招生考試試題

第1頁,共1頁

考 試 科 目數理統計學 系 所 別 統計學系 考 試 時 間 2 月 12 日 (三) 第 二 節

- . (15%) An electronic device has lifetime denoted by T. The device has value V=5 if it fails before time t=3; otherwise, it has value V=2T. If T has probability density function (PDF) $f_T(t)=\frac{2}{3}\exp\left(-\frac{2t}{3}\right)$, t>0, find the cumulative distribution function (CDF) of V.
- 2. Let $X_1, X_2, ..., X_n$ be independently and identically distributed (i.i.d.) random samples from a gamma distribution with shape parameter $\alpha > 0$ and scale parameter $\beta > 0$, having the PDF

$$f_G(x) = \frac{x^{\alpha-1} \exp(-x/\beta)}{\Gamma(\alpha)\beta^{\alpha}}, x > 0, \alpha > 0, \beta > 0.$$

- i. (15%) Find the maximum likelihood estimator of ψ , denoted by $\widehat{\psi}$, where $\psi = \alpha \beta$.
- ii. (15%) Solve for the smallest sample size such that the variance of $\hat{\psi}$ is smaller than a constant c > 0. The answer should be expressed in terms of α, β and c.
- 3. Let $X_1, X_2, ..., X_n$ be i.i.d. random samples from a Poisson distribution with mean $\lambda > 0$, denoted as $Poisson(\lambda)$, having the probability mass function

$$P_X(i) = \frac{\lambda^i \exp(-\lambda)}{i!}, i = 0,1,2,...$$

- i. (15%) Show that $Y = \sum_{i=1}^{n} X_i \sim Poisson(n\lambda)$ and Y is sufficient for λ .
- ii. (10%) Using the fact that " $\Pr(Y \le y_0) = \Pr(Z > 2n\lambda)$, where $Z \sim \chi_{2y_0}^2$ follows a chi-square distribution with $2y_0$ degrees of freedom," show that the $100(1-\alpha)$ % confidence interval for λ is $\left(\frac{1}{2n}\chi_{2y_0;1-\frac{\alpha}{2}}^2,\frac{1}{2n}\chi_{2y_0+2;\frac{\alpha}{2}}^2\right)$ when $Y=y_0>0$ is observed, where $\chi_{p;\alpha}^2$ is the chi-square α^{th} quantile for upper tail probability on p degrees of freedom.
- Let $W_1, W_2, ..., W_n$ be i.i.d. random samples from a truncated normal distribution $TN(\mu, \sigma, \alpha)$ with the PDF

$$f_{W}(w) = \frac{\frac{1}{\sigma}\phi\left(\frac{w-\mu}{\sigma}\right)}{1-\Phi\left(\frac{a-\mu}{\sigma}\right)}, w > a, \sigma > 0, \mu \in R(real\ numbers), a \in R,$$

where ϕ and Φ are the PDF and CDF of the standard normal distribution, respectively.

- i. (10%) Find a minimal sufficient statistic for the parameter a.
- ii. (10%) Give a $100(1-\alpha)$ % rejection region for the null hypothesis $H_0: \alpha > 0$.
- iii. (10%) If $W \sim TN(\mu, \sigma, a)$ and $U|W = w \sim Poisson(\lambda w)$ for any $w \geq a$, calculate the expectation value for W and U.

註