編號: 339 國立成功大學 103 學年度碩士班招生考試試題 共 4頁, 第 1 頁			
玄 所組別:分子醫學研究所			
考試科日·刀丁生物字			
※考生請注意:本試題不可使用計算機。請於答案卷(卡)作答,於本試題紙上作答者,不予計分。			
第一部分、選擇題(共20分,每題1分,單選)			
1. Which of the following statements is <u>false</u> regarding eukaryotic replication origins?			
A. More origins are licensed and initiated within embryonic cells than in adult cells.			
C. During each cell cycle only a subset of potential replication origins are licensed			
D A eukarvotic replication origin is defined by several factors including DNA sequence. DNA			
topology and chromatin structure.			
2. Replication origins are prevented from deactivating, but are re-initiated when which of the following			
cell cycles is employed?			
A. G1-S-G2-M			
B. G1-S			
C. S-M			
D. G1-S-M			
3. Which of the following replication enzymes functions to relieve tangling ahead of the replication fork			
A DNA belicase			
B Topoisomerase			
C. Telomerase			
D. DNA ligase			
4. Which of the following replication enzymes contains proofreading activity and corrects mistakes that			
are made during the S phase?			
A. DNA primase			
B. DNA polymerase			
C. DNA Telomerase			
D. DNA ligase			
5. which of the following best describes the reason why DIVA ligase is required to complete the replication of internal chromosomal segments?			
A DNA ligase is able to remove the last nucleotide of the oligonucleotide that is left by RNaseH			
B. DNA ligase is able to incorporate nucleotides into the gap that is left by RNaseH and the			
exonuclease.			
C. DNA ligase is able to generate the final phosphodiester bond thereby fixing single stranded nicks			
that are left by DNA polymerase.			
D. DNA ligase is able to relieve the tangles that occur ahead of the replication fork.			
6. Which of the following types of ends (that are generated by restriction enzymes) cannot be joined			
together by DNA ligase?			
A. 5 overnang – 5 overnang P. Plunt – Plunt			
C. 3' overhang -3 ' overhang			
D. 5' overhang – 5' overhang			
7. Which of the following enzymes is used during replication to separate the two DNA strands, thereby			
alleviating the need to raise the temperature to such high levels?			
A. DNA polymerase			
B. Topoisomerase I			

- B. Topolsomerase 1C. DNA helicaseD. Single Stranded Binding Protein (SSBP)

(背面仍有題目,請繼續作答)

編號: 339 國立成功大學 103 學年度碩士班招生考試試題 共 4 頁, 第 2 頁			
系所組別:分子醫學研究所			
考試科目:分子生物學 考試日期:0223,節次:2			
※ 老生請注音:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。			
8 Which of the following cell cycles allows for the maximum number of renlication origins to be used			
during DNA synthesis?			
A G1_S_G2_M			
B G1-S			
D. 01-5			
D CI S M			
D. UI-5-141 0. If a single DNA duplow is swalified using 25 younds of BCD which of the following would represent the			
total number of molecules that are generated?			
$A_{12} \times 35 = 70$			
$B_{35}^2 = 1225$			
$C_{2} + 35 = 37$			
$D_{2^{35}} = 3.4 \times 10^{12}$			
10. Which of the following pairs represents a transition mutation?			
A T.G			
P. C·A			
D TT			
D. 1.1			
 11. Which of the following types of mistakes/damage are corrected by the Mismatch Repair System? A. Thymine nucleotides base pairing with cytosine nucleotides (T:C) B. Addition of large chemical adducts (organic compounds) to bases. 			
C. Base oxidation (i.e. oxidative guanine)			
D. Formation of thymine dimers by exposure of DNA to ultraviolet light.			
12. During which phase of the cell cycle does the Mismatch Repair System function to remove incorrectly paired nucleotides?			
A. G1			
B.S			
C. G2			
D. M			
13. The Mismatch Repair System serves as a back-up system for which of the following repair pathways			
and/or enzymes?			
A. Base Excision Repair			
B. Nucleotide Excision Repair			
C. RNA polymerase			
D. DNA polymerase			
14. Which of the following is corrected by the Base Excision Repair System? A. Conversion of cytosine to uracil by deamination.			
B. Creation of a G:A base pair by DNA polymerase			
C. Expansion of CAG triplet repeats during cellular replication by slippage.			
D. Thymine dimer formation resulting from exposure to ultraviolet (UV) light			
15. In what phases of the cell cycle is the Base Excision Repair System functional?			
A. S			
B. G1-S-G2-M			
C. GI-S			
D. S-M			

編號: 339	國立成功大學 103 學年度碩士班招生考試試題	共 4 頁,第3頁		
系所組別:	分子醫學研究所			
考試科目:	分子生物學	考試日期:0223,節次:2		
※ 老牛請注	F育:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙	一作答者,不予計分。		
16 Which o	f the following serves as a backun for the Base Excision Renair System	n9		
A A	RNA nolymerase	LA e		
R	Mismatch Renair			
C.	Fail Safe DNA Glycosylases			
D.	DNA polymerase			
17 Which o	of the following is removed by the Nucleotide Excision Dengir System?			
17. Which o	G.T. nucleotide pair			
A. P	A: G nucleotide pair			
D.	A. O indicional pair double strend brooks (DSP)			
C.	double strand bleaks (DSD)			
D.	1 hymne dimers	S		
18. Which o	I the following serves as a backup for the Nucleotide Excision Repair	System?		
A.	DNA polymerase			
B.	RNA polymerase			
C.	Fail Safe DNA Glycosylase			
D.	Mismatch Repair System			
19. During	which phase of the cell cycle does the Nucleotide Excision Repair Sys	stem function to remove		
d	amaged nucleotides?			
A.	. G1-S			
B.	S			
C.	S-M			
D	. G1-S-G2-M			
20. Which	of the following enzymes is used in the Mismatch Repair, Base F	Excision and Nucleotide		
E	Excision Systems?			
A	. UvrD			
B. exonuclease				
C. MutS				
D	. DNA ligase			
第二部分、	選擇與簡答題(共20分)			
一、選擇題(10分,共3題,單選)				
	A A A TATCA A A TO TT CAT TTCT GATTTTGT GARACACCA	1		
Panel A	i a har an hi			
	LARRADA. BARADA BRANDILLOUD AND LOD	1		
NARA ANA ANA ANA ANA ANA ANA ANA ANA ANA				
	I V V V V V V V V V V V V V V V V V V V	4		
Danal P				
Fallel D				
	LIAN X X I A X X X X X X X X X X X X X X X X	-		
1 Thomps	NA sequences were obtained by (3 A)			
1. The above DIVA sequences were obtained by: (5 %)				
A. Sanger sequencing (with chain termination)				
B. Pyrosequencing (with chemiluminescence)				
C Sequencing by synthesis (with reversible due terminator)				
C. Sequencing by synthesis (with reversible dye-terminator) (背面仍有题目, 諸繼續作答)				
D Single-molecule real-time sequencing (with fluorescence)				

編號: 339 國立成功大學 103 學年度碩士班招生考試試題

共4頁,第4頁

系所組別:分子醫學研究所

考試科目:分子生物學

考試日期:0223,節次:2

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

2. What kind of mutation is shown in panel A? (5 分)

A. Point mutation

B. Frameshift mutation

- C. Deletion mutation
- D. Truncation mutation
- 3. What kind of mutation is shown in panel B? (2 分)
 - A. Point mutation
 - B. Frameshift mutation
 - C. Deletion mutation
 - D. Truncation mutation
- 二、簡答題 (共2題,10分)
- 1. What is a short tandem repeat (STR)? (4 分)
- 2. Please describe briefly the 2 most common testing using the STR analysis. (6 分)

第三部分、問答題(共5大題,60分)

- 1. Describe the roles of the cap structure and the roles of the poly (A) tail in regulating eukaryotic mRNAs (8 分).
- 2. Describe how RNA polymerase II-catalyzed transcription starts in a eukaryotic cell (12 分).
- 3. Please describe how the sigma factors of a bacterial RNA polymerase are involved in transcription initiation and how these factors regulate bacterial gene expression in response to changes in the environment? (10 分)
- 4. Please describe the mechanisms of transcription termination in bacteria (10 分).
- 5. Sarcolipin is the smallest eukaryotic protein (> 10 amino acids). The following is the full-length cDNA sequence for this protein (20 分).
 - 1 ggtgtgtctt tgcttctctt caggacgtga agacgagcca gtgtccttgg tgtgcactca
- 61 gaagteetee tggagttete acceagaeet tetgaagatg gageggteta eccaggaget
- 121 gtttatcaac ttcacagttg tcctgatcac tgtgctcctc atgtggctcc tcgtgaggtc
- 181 ctaccaatac tgaggggcca tgccacactc ccgggagtga ctgctgtgtg ccctgagctt
- 241 ccactgetet gttgacatgg gatgetgete ttggeteete cageacetet gatteaca
- 1) Please briefly define "central dogma for genetic flow" in molecular biology (5 分).
- 2) Please A) name the process of converting mRNA into cDNA and B) list 3 essential components required for synthesizing an eukaryotic RNA molecule in vitro (8 分).
- Please list the conventional nucleotide sequence for the initiation and termination codons in eukaryotes (4 分)
- 4) Based on the given cDNA sequence and your answers to the question (3), please calculate the exact number of amino acids encoded by Sacrolinin (3, 3)