國立臺北科技大學 101 學年度碩士班招生考試 系所組別:3510 化學工程研究所甲組 第二節 化工熱力學與反應工程 試題 第一頁 共一頁 ## 注意事項: - 1. 本試題共六題,配分共100分。 - 2. 請標明大題、子題編號作答,不必抄題。 - 3.全部答案均須在答案卷之答案欄內作答,否則不予計分。 - An irreversible reaction A+B→AB has been studied kinetically and one of possible mechanism for this reaction was supposed as follow. $$B+B \xrightarrow{k_1} B_2^* A+B_2^* \xrightarrow{k_2} AB+B AB+B \xrightarrow{k_3} A+B_2^*$$ Let the k values refer to the components disappearing. Please derive the rate (r_{AB}) equation from the mechanism. (10%) - \therefore 1. Please derive the performance equation for a second order kinetics $(2A \rightarrow P, -r_A = kC_A^2)$ with varied volume (with any constant ε_A) in a plug flow reactor with initial concentration C_{A0} . That is, derive the space time (τ) in the function of conversion (X_A) and ε_A . (10%) - 2. 1 liter/s of a 20% ozone-80% air mixture at 1.5 atm and 93°C passes through a plug flow reactor. Under these conditions ozone decomposes by homogeneous reaction $$2O_3 \longrightarrow 3O_2$$, $-r_{ozone} = kC_{ozone}$, $k = 0.05 \frac{liter}{mol. sec}$ What size reactor is needed for 50% decomposition of ozone? Note: gas constant R=0.08206 L·atm/(K·mol) (10%) We wish to explore various reactor setups for the transformation of A into R. The feed contains 99% A, 1% R; the desired product is to consist of 10% A and 90% R. The transformation takes place by means of the elementary reaction, A+R→R+R, with rate constant k=1 liter-/(mol·min). The concentration of active materials is C_{A0}+C_{R0} = C_A+C_R = C₀ = 1 mol/liter throughout. What reactor holding time will yield a product in which $C_R = 0.9$ mol/liter (a) in a plug flow reactor, (5%) (b) in a mixed flow reactor, (5%) and (c) in a minimum-size setup without recycle? (10%) - Calculate the internal-energy and enthalpy changes that occur when air is changed from an initial state of 40 °F and 10 atm, where its molar volume is 36.49 ft³/(lb·mol), to a final state of 140 °F and 1 atm. Assume for air that PV/T is a constant and that $C_v = 5$ and $C_p = 7$ Btu·(lb·mol)⁻¹.°F⁻¹. (15%) Note: (i) the relation between the Fahrenheit and Rankine scales: $t(^{\circ}F)=T(R)-459.67$. (ii) 1atm·ft³=2.7195 Btu - \pm 1. An ideal gas undergoes the following sequence of mechanically reversible processes in a closed system: - (a) From an initial state of 70 °C and 1 bar, it is compressed adiabatically to 150 °C. (b) It is then cooled from 150 to 70 °C at constant pressure. (c) Finally, it is expanded isothermally to its original state. Calculate W, Q, ΔU , and ΔH for each of the three processes and for the entire cycle. Take $C_v = (3/2)R$ and $C_p = (5/2)R$. 2. If these processes are carried out irreversible but so as to accomplish exactly the same changes of state (i.e., the same changes in P, T, U, and H). Calculate W, Q, ΔU , and ΔH for each of the three processes and for the entire cycle, if each step is carried out with an efficiency of 80%. (30%) Please summarize your answers in a Table. | ore and justice; we | Mechanically reversible | | | | Mechanically irreversible | | | | |--|-------------------------|--|---|---|---------------------------|----|--|---| | The state of s | ΔU | ΔН | Q | W | ΔU | ΔН | Q | W | | (a) | | no Mara (A) del cica de d | | | | | The state of s | | | (b) | | And the Princeton | | | | | | Target And | | (c) | | Per minima de la companya del companya del companya de la | | | | | The second of th | | | Sum | | PROPERTY AND THE | | | | | 1000 | | ∴ For refrigeration at a temperature level of 5°C in a surrounding at 30 °C, what is the coefficient of performance for a Carnot refrigerator? (5%)