國立臺灣師範大學 112 學年度碩士班招生考試試題

科目:機率與統計 適用系所:數學系

注意:1.本試題共1頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則依規定扣分。

- 1. (16 分) If a sample of two balls are to be selected from an urn contains 10 balls numbered from 1 to 10. Let X and Y be the numbers of the first and second selected balls respectively.
 - (a) Give $P(X \ge Y)$ under sampling with replacement case.
 - (b) Give $P(X \ge Y)$ under sampling without replacement case.
- 2. $(24 \, \, \, \, \, \,)$ Let X_1, \ldots, X_n be a random sample from a $\Gamma(1, \, \, \theta)$ distribution with mean θ .
 - (a) Give the maximum likelihood estimator of θ .
 - (b) Give an approximate $(1-\alpha)100\%$ confidence interval of θ .
 - (c) Give an exact $(1-\alpha)100\%$ confidence interval of θ .
- 3. $(16 \, \%)$ Two cards are randomly chosen without replacement from an ordinary deck of 52 cards. Let X denote the number of spades chosen.
 - (a) Give E(X | the ace of spades is chosen).
 - (b) Give E(X | at least one spade is chosen).
- 4. $(24 \, \, \, \, \, \,)$ Let X_1, \ldots, X_n be a random sample from a Poisson (θ) distribution with mean θ and $Y = g(\overline{X})$, where $g(\cdot)$ is some differentiable function and \overline{X} is the sample mean. By using the first order Taylor approximation, Y can be written as

$$Y = g(\overline{X}) \approx g(\theta) + g'(\theta)(\overline{X} - \theta)$$
.

- (a) Give E(Y) under this approximation.
- (b) Give Var(Y) under this approximation.
- (c) Give $g(\cdot)$ if $Var(Y) \approx 1$.
- 5. $(20 \, \%)$ If a random variable X is either from U(0, 2) or U(1, 3) distribution, we need to test the hypothesis of $H_0: X \sim U(0, 2)$ versus $H_a: X \sim U(1, 3)$. Please derive an optimal test by using the Neyman-Pearson Theorem. You must specify the testing rule, including test statistic and critical region for significance level α .