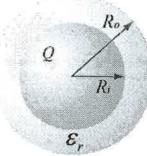
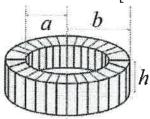
1170E03

國立臺北科技大學 112 學年度碩士班招生考試


系所組別:2402 光電工程系碩士班

第二節 電磁學 試題 (選考)

第1頁 共1頁


注意事項

- 1. 本試題共 6 題, 共 100 分。
- 2. 不必抄題, 作答時請將試題題號及答案依照順序寫在答案卷上。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。
- 1. A metal sphere of radius R_i carries a charge Q. It is surrounded by linear material of dielectric constant ε_r , out to radius R_o as in the figure.
 - (a) Find the potential inside the dielectric material, $R_i < r < R_o$. (relative to infinity) [10%]
 - (b) What is the total surface bound charge on the inner surface of the dielectric material? [10%]
 - (c) Find the energy of this configuration. [10%]

- 2. A perfect dipole p is situated at the origin, pointing in the z direction.
 - (a) What is the force on a point charge q at (0, d, 0) (Cartesian coordinates)? [10%]
 - (b) How much work is required to move q from (0, d, 0) to (0, 0, d)? [10%] [for your reference: The electric field and the potential at r, θ due to a dipole at origin is given by, $\vec{E}_{dip}(\vec{r}) = \frac{p}{4\pi\epsilon_0 r^3} (2\cos\theta \hat{r} + \sin\theta \hat{\theta})$ and $V_{dip}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \frac{\vec{p} \cdot \hat{r}}{r^2}$.]
- 3. Find the magnetic dipole moment of a particle with charge q and mass m moving in a circle of radius R with constant angular velocity $\vec{\omega}$. [10%]
- 4. A current flows down a long straight wire of radius R. The wire is made of linear material with susceptibility χ_m , and the current density is proportional to the distance from the axis, J = kr, for some constant k.
 - (a) What is the magnetic field \vec{B} a distance r from the axis? [10%]
 - (b) Find the bound surface current density. [10%]

5. Find the self-inductance of a toroid with rectangular cross section (inner radius a, outer radius b, height h, as in the figure), that carries a total of N turns. [10%]

6. In a source-free lossy medium the homogeneous vector Helmholtz's equation is given by $\nabla^2 \vec{E} - \gamma^2 \vec{E} = 0$. For a plane wave in good conductors, the propagation constant γ is approximated as $\gamma \simeq (1+j)\sqrt{\pi f \mu \sigma}$. The skin depth in copper at the frequency of 1 Mhz is 66 μm . What is its skin depth at 1 GHz? [10%]