WAZEEO6

國立臺北科技大學 112 學年度碩士班招生考試

系所組別:2142 電機工程系碩士班丁組

第一節 線性代數 試題 (選考)

第1頁 共1頁

注意事項:

- 1. 本試題共5題,共100分。
- 2. 不必抄題,作答時請將試題題號及答案依照順序寫在答案卷上。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。
- 4. 各題答案均須完整推導,否則將酌予扣分。
- 1. (20%) Least-squares (LS) solution:
 - (1) (10%) Find an LS solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$ for

$$\mathbf{A} = \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

- (2) (10%) Explain why we need the LS solution for a linear system.
- 2. (15%) Consider an N x N matrix H and a non-zero N x 1 vector x. It is known that

$$\lambda_{\max}^2 \mathbf{x}^H \mathbf{x} \ge \mathbf{x}^H \mathbf{H}^H \mathbf{H} \mathbf{x} \ge \lambda_{\min}^2 \mathbf{x}^H \mathbf{x}$$
,

where λ_{max} and λ_{min} are the maximum and minimum singular values of **H**. Use the inequality above to show that

$$\min_{\mathbf{x}_i \neq \mathbf{x}_j} \left\| \mathbf{H}(\mathbf{x}_i - \mathbf{x}_j) \right\|_2^2 \ge \lambda_{\min}^2 \min_{\mathbf{x}_i \neq \mathbf{x}_j} \left\| (\mathbf{x}_i - \mathbf{x}_j) \right\|_2^2$$

- 3. (15%) Let the singular value decomposition (SVD) of an $N \times N$ full-rank matrix **H** be expressed as $\mathbf{H} = \mathbf{ABC}$.
 - (1) (10%) Detail the properties of matrices A, B, and C.
 - (2) (5%) Show that SVD is not unique if the diagonal elements of **B** are not necessary with decreasing order.
- 4. (25%) Consider a linear system given as

$$\mathbf{y} = \sum_{i=1}^{2} \mathbf{H}_{i} \mathbf{x}_{i} ,$$

where \mathbf{H}_1 and \mathbf{H}_2 are $M \times N$ matrices with M = 2N.

- (1) (15%) Demonstrate how to solve \mathbf{x}_1 and \mathbf{x}_2 by using the null spaces of \mathbf{H}_1 and \mathbf{H}_2 .
- (2) (10%) What possible problems we may encounter in (1).
- 5. (25%) Let **A** be an $N \times N$ matrix.
 - (1) (5%) Describe the null space of A.
 - (2) (10%) Show that the null space of A is a subspace.
 - (3) (5%) Describe the Rank Theorem.
 - (4) (5%) Use Rank Theorem to show that the columns of **A** are linearly dependent if **A** is not of full-rank.