國立臺北科技大學 112 學年度碩士班招生考試

系所組別:2120 電機工程系碩士班乙組

第一節 電路學 試題

第1頁 共2頁

注意事項:

- 1. In Figure 1, please find the voltage v_o using the node-voltage method. (10%)

Figure 1.

2. In Figure 2, please find the current *i* using the supernode analysis. (10%)

Figure 2.

3. In Figure 3, please find the power dissipated in 2Ω using the mesh-current method. (10%)

4. In Figure 4, please find the power dissipated in 1Ω using the supermesh analysis. (10%)

Figure 4.

5. In Figure 5, please find the value of I_0 , where Z_1 and Z_2 are matrixes of impedance parameters, equal to $Z_1 = \begin{bmatrix} 2\Omega & 1\Omega \\ 1\Omega & 1\Omega \end{bmatrix}$ and $Z_2 = \begin{bmatrix} 1\Omega & 1\Omega \\ 1\Omega & 2\Omega \end{bmatrix}$, respectively. (10%)

6. In Figure 6, at t=0.5s, please find the values of v_1 , v_2 and the energy stored in the transformer, called w, where the values of the primary self-inductance L_1 , the secondary self-inductance L_2 , and the coupling coefficient k are 9H, 4H, and 0.5, respectively. (3%, 3%, 4%)

7. In Figure 7, (a) plot the Thevenin equivalent circuit looking from the terminals a and b; (b) based on (a), find the maximum power transfer under the condition that k is a coupling coefficient of 0.8 and the load Z_L is purely resistive. (5%, 5%)

Figure 7.

注意:背面尚有試題

- 8. In Figure 8, an element has the voltage and current defined. If $v(t) = 1 + 2\sin(\omega t + 30^{\circ}) + 3\cos(2\omega t + 60^{\circ}) + 4\cos(3\omega t 60^{\circ})$ V and
 - $i(t) = 4+3\cos(\omega t + 60^\circ) + 2\cos(2\omega t 30^\circ) + \cos(4\omega t + 30^\circ)$ A, then find the rms values of
 - v(t) and i(t), namely, V_{rms} and I_{rms} , and the real power, namely, P. (3%, 3%, 4%)

Figure 8.

9. In Figure 9, (a) find the complex power delivered from the voltage source; (b) find the value of the power factor at the sending end of the line. (5%, 5%)

Figure 9.

10. Figure 10 shows the a-phase circuit from the balanced three-phase circuit. The power factor looking from the terminals a and b is a and a is a and a is a and a is a and a and a is a and a and a is a and a and a and a is a and a a

Figure 10.