1．An ideal solution is made from 3 moles of benzene and 1 mole of toluene．Please calculate $\Delta G_{\text {mixing }}$ and $\Delta S_{\text {mixing }}$ at 298 K and 1 bar pressure．Is mixing a spontaneous process？（ 12% ）

2．Please calculate ionic strength (I) for（a）a 0.05 molar solution of NaCl and for（b） $\mathrm{a}_{\mathrm{Na}}^{2} \mathrm{SO}_{4}$ solution of the same molality．You may use the equation shown below：
$I=\frac{1}{2} \sum_{\mathrm{i}}\left(\mathrm{m}_{\mathrm{i}^{+}}+\mathrm{Z}_{\mathrm{i}^{+}}{ }^{2}+\mathrm{m}_{\mathrm{i}}-\mathrm{Z}_{\mathrm{i}^{-}}{ }^{2}\right) \mathrm{Z}_{\mathrm{i}}$ ：charge number of an ion i ． m_{i} ：molality of an ion．（12\％）

3．Given the following reduction reactions and standard cell potential E^{0} values：
$\begin{array}{ll}\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq}) & E^{0}=+0.771 \mathrm{~V} \\ \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s}) & E^{0}=-0.447 \mathrm{~V}\end{array}$
Calculate E^{0} for the half－cell reaction $\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})(14 \%)$

4．The decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ is an important process in tropospheric chemistry．The half－life for the first－order decomposition of this compound is $2.05 \times 10^{4} \mathrm{~s}$ ．How long will it take for a sample of $\mathrm{N}_{2} \mathrm{O}_{5}$ to decay to 60% of its initial value？（12\％）

5．When 1.5 moles of an ideal gas are heated at a constant pressure of 2.0 bar，the temperature increases from 300 K to 325 K ．Given that the molar heat capacity at constant pressure is $25.35 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ ，calculate $q, \Delta H$ and ΔU ．（18\％）

6． 4.5 moles of He gas expand isothermally at 308 K from $48.0 \mathrm{~cm}^{3}$ to $547.5 \mathrm{~cm}^{3}$ ．Calculate ΔG and ΔA for the process．（20\％）

7．The normal boiling point of isopropanol is 355.7 K ，while the molar enthalpy of vaporization is $44.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$ ．Determine the vapor pressure at 298 K ．（ 12% ）

