1	

國立雲林科技大學 112 學年度 碩士班招生考試試題

 $h = 6.63 \times 10^{-34}$ J-s, $k = 8.62 \times 10^{-5}$ eV/K, $q = 1.6 \times 10^{-19}$ C, $\varepsilon_{Si} = 12 \times 8.85 \times 10^{-14}$ F/cm, $n_{\rm i} = 10^{10} {\rm ~cm^{-3}}, {\rm ln10} \approx 2.3$

- 1. Explain the following terms: (a) Impurity (b) Line dislocation (10%)
- 2. Explain the following terms: (a) Ternary compound semiconductor (b) Quaternary compound semiconductor (10%)
- 3. GaAs is more suited than Si for use in high-speed electronic devices. Please explain why. (10%)
- 4. Consider the Fermi-Dirac probability function $f_F(E)$, and E_F is the Fermi energy. Assume there are two temperatures $T_1 = 0$ K and $T_2 > 0$ K.
 - (a) At T_1 , will there be any electron having energy larger than E_F ? Why? (5%)
 - (b) At T_2 , will there be any electron having energy larger than E_F ? Why? (5%)
- 5. Consider a silicon semiconductor at room temperature in which the concentration of donor atoms is $N_d = 5 \times 10^{15}$ cm⁻³. Calculate the thermal-equilibrium electron concentration and hole concentration. (10%)
- 6. Explain or define the following terms:
 - (a) Quasi-Fermi energy (5%) (b) Flat band voltage
 - (5%)
 - (c) Lattice scattering (5%)
- 7. If temperature is increased about 50 degrees, how many order of current density for Si pn diode will be increased or decreased at small forward voltage ($\langle V_{on} \rangle$) and large forward biases ($\geq V_{on}$), respectively? Explain the reason of these changes. (15%)
- 8. According $n(E) = D_C(E)f(E)$ where $f(E) = \frac{1}{1 + e^{(E E_F)/kT}} \approx e^{-(E E_F)/kT}$, $D_C(E) = A\sqrt{E E_C}$ and $A = \frac{4\pi (2m_n^*)^{3/2}}{h^3}$, find the energy E with maximum value of n(E). (Hint: the maximum value is occurred at dn(E)/dE = 0.) (20%)