國立中正大學 112 學年度碩士班招生考試

試 題

[第2節]

科目名稱	線性代數
系所組別	通訊工程學系-通訊甲組

-作答注意事項-

- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是否相符。
- 1. 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、 畫記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。

國立中正大學 112 學年度碩士班招生考試試題

科目名稱:線性代數

本科目共 1 頁 第 1 頁

系所組別:通訊工程學系-通訊甲組

Let
$$\mathbf{A} = [\mathbf{A}^{(1)} \mathbf{A}^{(2)} \mathbf{A}^{(3)}] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$
, where $\mathbf{A}^{(1)}$, $\mathbf{A}^{(2)}$ and $\mathbf{A}^{(3)}$ are ordered column vectors of \mathbf{A} ,

$$\mathbf{B} = [\mathbf{B}^{(1)} \mathbf{B}^{(2)} \mathbf{B}^{(3)}] = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ where } \mathbf{B}^{(1)}, \mathbf{B}^{(2)} \text{ and } \mathbf{B}^{(3)} \text{ are ordered column vectors of } \mathbf{B}, \text{ and } \mathbf{B}^{(3)} \text{ are ordered column vectors of } \mathbf{B}, \text{ and } \mathbf{B}^{(3)} \text{ are ordered column vectors of } \mathbf{B}, \text{ and } \mathbf{B}^{(3)} \text{ are ordered column vectors of } \mathbf{B}, \text{ and } \mathbf{B}^{(3)} \text{ are ordered column vectors of } \mathbf{B}, \text{ and } \mathbf{B}^{(3)} \text{ are ordered column vectors of } \mathbf{B}, \text{ and } \mathbf{B}^{(3)} \text{ are ordered column vectors of } \mathbf{B}, \text{ and } \mathbf{B}^{(3)} \text{ are ordered column vectors of } \mathbf{B}, \text{ and } \mathbf{B}^{(3)} \text{ are ordered column vectors of } \mathbf{B}, \text{ and } \mathbf{B}^{(3)} \text{ are ordered column vectors of } \mathbf{B}, \text{ and } \mathbf{B}^{(3)} \text{ are ordered column vectors of } \mathbf{B}, \text{ and } \mathbf{B}^{(3)} \text{ are ordered column vectors of } \mathbf{B}, \text{ and } \mathbf{B}^{(3)} \text{ are ordered column vectors of } \mathbf{B}, \text{ and } \mathbf{B}^{(3)} \text{ are ordered column vectors of } \mathbf{B}, \text{ and } \mathbf{B}^{(3)} \text{ are ordered column vectors of } \mathbf{B}, \text{ and } \mathbf{B}^{(3)} \text{ are ordered column vectors of } \mathbf{B}, \text{ and } \mathbf{B}^{(3)} \text{ are ordered column vectors of } \mathbf{B}, \text{ and } \mathbf{B}^{(3)} \text{ are ordered column vectors of } \mathbf{B}, \text{ and } \mathbf{B}^{(3)} \text{ are ordered column vectors of } \mathbf{B}, \text{ and } \mathbf{B}^{(3)} \text{ are ordered column vectors of } \mathbf{B}, \text{ and } \mathbf{B}^{(3)} \text{ are ordered column vectors of } \mathbf{B}, \text{ and } \mathbf{B}^{(3)} \text{ are ordered column vectors of } \mathbf{B}, \text{ and } \mathbf{B}^{(3)} \text{ are ordered column vectors of } \mathbf{B}, \text{ and } \mathbf{B}^{(3)} \text{ are ordered column vectors of } \mathbf{B}, \text{ and } \mathbf{B}^{(3)} \text{ are ordered column vectors of } \mathbf{B}, \text{ and } \mathbf{B}^{(3)} \text{ are ordered column vectors of } \mathbf{B}, \text{ are ordere$$

$$\mathbf{I}_3 = [\mathbf{e}_1 \ \mathbf{e}_2 \ \mathbf{e}_3] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, where \mathbf{e}_1 , \mathbf{e}_2 and \mathbf{e}_3 are ordered column vectors of \mathbf{I}_3 .

- 1. Show your answers with details
 - a. (5 pts.) The sum of all eigenvalues in A.
 - b. (5 pts.) The geometry multiplicities of A.
 - c. (5 pts.) The product of all eigenvalues in B.
 - d. (5 pts.) The inverse matrix of $\bf B$ with the augmented matrix $[\bf I_3|\bf B]$ and Gauss-Jordan elimination.
 - e. (15 pts.) The solution of $\mathbf{A}[x_1 \ x_2 \ x_3]^T = [1 \ 2 \ 3]^T$ with Cramer's rule.
- 2. In \mathbb{R}^3 , find the results with details.
 - a. (5 pts.) The transition matrix from the standard basis $\underline{e} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ to the basis $\underline{A} = \{\mathbf{A}^{(1)}, \mathbf{A}^{(2)}, \mathbf{A}^{(3)}\}$.
 - b. (5 pts.) The coordinate vector with the basis $\underline{A} = \{A^{(1)}, A^{(2)}, A^{(3)}\}\$ corresponding to $(1\ 2\ 3)_{\underline{e}}$ with the standard basis $\underline{e} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$.
 - c. (10 pts.) The coordinate vector with the basis $\underline{A} = \{A^{(1)}, A^{(2)}, A^{(3)}\}\$ corresponding to $(1\ 2\ 3)\underline{B}$ with the basis $\underline{B} = \{B^{(1)}, B^{(2)}, B^{(3)}\}\$.
 - d. (10 pts.) The transition matrix from the standard basis $\underline{B} = \{\mathbf{B}^{(1)}, \mathbf{B}^{(2)}, \mathbf{B}^{(3)}\}\$ to $\underline{A} = \{\mathbf{A}^{(1)}, \mathbf{A}^{(2)}, \mathbf{A}^{(3)}\}\$.
- 3. The inner product is $\langle \mathbf{U}, \mathbf{V} \rangle = \text{tr}(\mathbf{U}^T \mathbf{V})$ where \mathbf{U} and \mathbf{V} are in the real vector space $\mathbf{M}_{3\times3}$, and $\text{tr}(\mathbf{X})$ is the trace of the matrix \mathbf{X} .
 - a. (5 pts.) Find the inner product of the identity matrix (I_3) and A.
 - b. (10 pts.) Prove or disprove that the additivity axiom holds with this inner product.
 - c. (10 pts.) Find the norm-2 length of **B**.
 - d. (10 pts.) Show the cosine of the angle between the matrices A and B with details.