國立中正大學 112 學年度碩士班招生考試

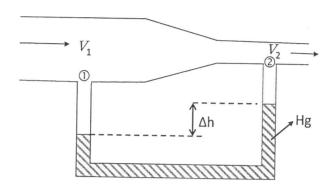
試題

[第2節]

科目名稱	輸送現象與單元操作
系所組別	化學工程學系

-作答注意事項-

- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是否相符。
- 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、
 畫記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。


國立中正大學 112 學年度碩士班招生考試試題

科目名稱:輸送現象與單元操作

系所組別:化學工程學系

本科目共 1 頁 第 1 頁

1. A capillary flowmeter is mainly used to measure the pressure difference of pipes with different cross-sectional areas (as shown in the figure below). The cross-sectional areas at \mathbb{O} and \mathbb{O} are A_1 and A_2 respectively. The reading difference of the capillary flowmeter is Δh . Assume it is a horizontal frictionless, stable and equal-density fluid. Please use the Bernoulli equation to derive the velocities V_1 and V_2 (by using Δh , g_c , A_1 and A_2 to express)? (25%)

- 2. A heat exchanger is used to heat water ($C_{pw}=3.0~KJ/kg\cdot K$) from 40°C to 90°C. The mass flow rate of the water is 5.6 kg/s. The hot stream ($C_{pw}=1.6~KJ/kg\cdot K$) enters the heat exchanger at 210°C and leaves at 160°C. The overall heat transfer coefficient is 60 W/m²·K. Please determine:
 - a. The mass flow rate of the heat stream. (10%)
 - **b.** The exchanger surface area for counterflow operation. (15%)
- 3. A liquid is flowing at a rate of 0.2 ft³/sec per feet of width of the plate between two flat parallel plates. The viscosity (μ) of the liquid is 6.98 ×10⁻³ lb_f· sec/ft². Assume laminar flow. If the distance between the plates is 1 in, please calculate:
 - a. The maximum velocity. (20%)
 - **b.** The shear stress at the plate wall. (5%)
- 4. A spherical ball of solid (nonporous naphthalene) is suspended in an infinite, still air. The naphthalene ball slowly sublimes, releasing the naphthalene vapor into the surrounding air by molecular diffusion-limited process. Estimate the time required to reduce the diameter from 1.0 cm to 0.25 cm when the surrounding air is at 347 K and 1.0 atm. Naphthalene has a molecular weight of 128 g/mol, a solid density of 1.145 g/cm³, and a diffusivity in air of 0.0819 cm²/sec, and exerts a vapor pressure of 5.0 Torr (666 Pa) at 347 K. (25%)