## 國立中正大學 112 學年度碩士班招生考試

# 試 題

## [第3節]

| 科目名稱 | 自動控制          |
|------|---------------|
| 系所組別 | 機械工程學系光機電整合工程 |

### -作答注意事項-

- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是 否相符。
- 1. 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、畫記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。

### 國立中正大學 112 學年度碩士班招生考試試題

科目名稱:自動控制

本科目共1頁 第1頁

**系所組別:機械工程學系光機電整合工程** 

1. (25%) Consider the dynamics G with the input-output relationship governed by

$$y(t) + \int_{0^{-}}^{t} y(\tau) d\tau = u(t)$$
, for  $\forall t \ge 0$ ,

where u is the input and y is the output.

- (a) (5%) Prove that the transfer function of the dynamics G is  $G(s) = \frac{s}{s+1}$
- (b) (5%) What is the unit-pulse response of G?
- (c) (5%) Infer the unit-step response of G from the unit-pulse response in (b).
- (d) (5%) What is the frequency response of G?
- (e) (5%) Is G a low-pass filter? Why or why not?
- 2. (25%) Consider the dynamics G with the transfer function being

$$G(s) \equiv \frac{21s^2 + 21s + 20}{(s+20)(s^2 + s + 1)}.$$

- (a) (5%) Is G bounded-input-bounded-output stable?
- (b) (5%) What is the steady-state error of the unit-step response?
- (c) (5%) Estimate the rising time of the unit-step response.
- (d) (5%) Estimate the overshoot of the unit-step response.
- (e) (5%) Estimate the settling time of the unit-step response.
- 3. (20%) Please apply magnitude and angle condition to check if the following test points are going to be passed by the root-locus and find its *K*.



$$G(s) = \frac{K(s+4)(s+5)(s+6)}{(s+7)(s+8)(s+9)}$$

$$s = -7.5$$

$$s = -4.5$$

$$s = -5-3j$$

$$s = -6+2j$$
(a)
(b)
(c)
(d)
(e)

4. (20%) Please plot the root locus with its asymptotes and intersection point.



$$G(s) = \frac{K}{(s - P_1)(s - P_2)(s - P_3)(s - P_4)}$$

where 
$$P_1 = -5 + i$$
;  $P_2 = -5 - i$ ;  $P_3 = -3 + i$ ;  $P_4 = -3 - i$ 

5. (10%) Please use asymptotic approximations to plot the Bode plot ( $\omega$  within [10<sup>-2</sup>, 10<sup>2</sup>]) for G(s) = s and G(s) = 1/s.