國立中正大學 112 學年度碩士班招生考試

試題

[第1節]

科目名稱	計算機組織
系所組別	電機工程學系-計算機工程組 晶片系統組

-作答注意事項-

- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是否相符。
- 1.預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、 畫記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷 (答案卷) 作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。

國立中正大學 112 學年度碩士班招生考試試題

科目名稱:計算機組織

本科目共 2 頁 第 1 頁

系所組別:電機工程學系-計算機工程組、晶片系統組

1. (20%) An engineer designs a watching dog timer for MIPS platform using D type flip-flops as follows. With the initial condition $(Q, \overline{Q}) = (1,1)$, what are the outputs from A0 to A2 at 5th positive clock edge? Why?

2. (20%) A timing sequence for writing data to the memory is as shown below. Please re-draw a timing sequence with the conditions of (a) memory is triggered by clock's positive edge, (b) write enable is high level triggered, (c) data's hold time is 3/4 T, (d) data's setup time is 1/2 T.

- 3. (20%) Assume two different CPUs designs running with the same instruction set architecture as shown below. The CPU1 is with a clock rate of 2.5 GHz, and the CPU2 is with a clock rate of 3 GHz. Given a program with a dynamic instruction count of 1.0E6 instructions divided into classes as follows: 10% class A, 20% class B, 50% class C, and 20% class D.
 - (a). (10%) Please provide the global CPI for each case?
 - (b). (10%) What is the clock cycles required for each CPU design?

	CPI for each instruction class					
	A	В	С	D		
CPU1 CPI	1	2	3	3		
CPU2 CPI	2	2	2	2		

國立中正大學 112 學年度碩士班招生考試試題

科目名稱:計算機組織

本科目共2頁第2頁

系所組別:電機工程學系-計算機工程組、晶片系統組

- 4. (20%) Assume the instructions are as follows, and the bne is determined at the output of the register file.
 - (a). (10%) Please plot the MIPS five-stage pipeline sequence diagram without forwarding. (10%)
 - (b). (10%) Please re-plot the diagram of question (a) with forwarding. (10%)

add \$10, \$21, \$9

lw \$9, 20(\$10)

bne \$10, \$9, 1000

5. (20%) Translate the following loop into C. Assume that the C-level integer *i* is held in register \$11, \$s2 holds the C-level integer called *result*, and \$s0 holds the base address of the integer *MemArray*.

	addi	\$t1,	\$0,	0
LOOP:	1w	\$s1,	0 (\$s0)	
	add	\$s2,	\$s2,	\$ s1
	addi	\$s0,	\$s0,	4
	addi	\$t1,	\$t1,	1
	slti	\$t2,	\$t1,	100
	bne	\$t2,	\$s0,	LOOP