國立中正大學 112 學年度碩士班招生考試

試 題

[第1節]

科目名稱	數學
条所組別	資訊工程學系-甲組、乙組

-作答注意事項-

- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是否相符。
- 1. 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、 書記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。

國立中正大學112學年度碩士班招生考試試題

科目名稱:數學

本科目共3頁第1頁

系所組別:資訊工程學系-甲組、乙組

- 1. (20 points) Multiple choices questions, gain two points for each correct answer.
 - (a) Consider the homogeneous linear system $A\mathbf{x} = \mathbf{0}$, where $A = \begin{bmatrix} 1 & 4 & 0 & 1 \\ 1 & 4 & -3 & -3 \\ 0 & 0 & 3 & 4 \end{bmatrix}$,

which one of the following statements is correct?

- (1). $A\mathbf{x} = \mathbf{0}$ has no solution.
- (2). Dimension of null space of A is 2.
- (3). Dimension of null space of A is 3.
- (4). For any vector $\mathbf{b} \in \mathbb{R}^3$, $A\mathbf{x} = \mathbf{b}$ has at least one solution.
- (b) Which one of the following subset of all 2×2 real matrices is a vector subspace.
 - (1). All 2×2 anti-symmetric matrices that is $A^T = -A$.
 - (2). All 2×2 invertible matrices.
 - (3). All 2×2 singular matrices.
 - (4). All 2×2 matrices that satisfy the property $A^2 = 0$.
- (c) Let A be a 4×4 invertible matrix. Which one of the following statement is incorrect?
 - (1). $A = E_1 E_2 \cdots E_k$ where each E_i is a 4×4 elementary matrix.
 - (2). det(A) = 0.
 - (3). $A\mathbf{x} = \mathbf{b}$ has a unique solution.
 - (4). $(A^{-1})^T = (A^T)^{-1}$.
- (d) Let A be a 3×3 matrix with eigenvalues -1, 2, 4. Which one of the following statemnts is incorrect?
 - (1). A is invertible.
 - (2). A is diagonalizable.
 - (3). Trace of A : tr(A) = 7
 - (4). det(A) = -8
- (e) Which one of the following statements is not a basis for the vector space of all symmetric 2×2 matrices.
 - (1). $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$.
 - (2). $A = \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}.$

 - (3). $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} -2 & -2 \\ -2 & 1 \end{bmatrix}$. (4). $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
- (f) Let A be a 4×7 matrix. Which one of the following statements is incorrect?
 - (1). The maximum possible value of rank(A) is 4.
 - (2). If rank(A) = 3, then dimension of column space of A is 4.
 - (3). If rank(A) = 4, then Ax = 0 has infinite number of solutions.
 - (4). Rank(A) + Nullity(A) = 7

國立中正大學 112 學年度碩士班招生考試試題

科目名稱:數學

本科目共3頁第2頁

系所組別:資訊工程學系-甲組、乙組

(g) Let L be a lower triangular matrix. Which one of the following is incorrect?

- (1). If L is invertible, then L^{-1} is an upper triangular matrix.
- (2). det(L) is the product of diagonal elements in L.
- (3). If L is a square matrix then L^2 is a lower triangular matrix.
- (4). L^T is an upper triangular matrix.
- (h) Let A be a 3×3 matrix with eigenvalues : 2, 3, 4 which one of the following statements is incorrect?
 - (1). A^{-1} has eigenvalues $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$.
 - (2). A^2 has eigenvalues 4, 9, 16.
 - (3). A^T has eigenvalues 2, 3, 4.
 - (4). A + 5I has eigenvalues 2, 3, 4.
- (i) Let V be the real vector space of continuous function over [-1,1] with the inner product $\langle f,g \rangle = \int_{-1}^{1} f(x)g(x)dx$. Which one of the following statements is correct.
 - (1). $1, e^x$ is orthogonal.
 - (2). $1, x^2$ is orthogonal.
 - (3). e^x , e^{-x} is orthogonal.
 - (4). x, x^2 is orthogonal.
- (j) Which one of the following statements is incorrect?
 - (1). If **b** is in column space of A, then the least square solution to $A\mathbf{x} = \mathbf{b}$ is also a solution to $A\mathbf{x} = \mathbf{b}$.
 - (2). The normal system $A^T A \mathbf{x} = A^T \mathbf{b}$ is always consistent.
 - (3). The least square solution to a system Ax = b is always unique.
 - (4). The least square solution to $A\mathbf{x} = \mathbf{b}$ is the projection of \mathbf{b} in the column space of A.

2. (10 points)

- (a) (5 points) Briefly explain spectral decomposition about matrix property, eigenvalues and diagonalization. Then give the definition of spectral decomposition.
- (b) (5 points) Briefly explain singular value decomposition about matrix property, singular values, diagonalization and orthonormal matrices. Then give the definition of singular value decomposition.
- 3. (10 points) The matrix $A = \begin{bmatrix} 1 & 2 & 1 & -7 \\ 2 & 4 & 1 & -5 \\ 1 & 2 & 2 & -16 \end{bmatrix}$ is converted to row-reduced echelon form

by Gaussian elimination, resulting the following matrix $R = \begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 0 & 1 & 9 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. Give an orthonormal basis for the row space of A.

國立中正大學 112 學年度碩士班招生考試試題

科目名稱:數學

本科目共3頁第3頁

系所組別:資訊工程學系-甲組、乙組

- 4. (10 points) Consider the basis $S = \{\mathbf{v_1}, \mathbf{v_2}\}$ for R^2 , where $\mathbf{v_1} = (1, 1)^T$ and $\mathbf{v_2} = (1, 0)^T$, and let $T : R^2 \to R^2$ be the linear operator for which : $T(\mathbf{v_1}) = (1, -2)^T$ and $T(\mathbf{v_1}) = (-4, 1)^T$.
 - (a) (4 points) Compute T(5, -3).
 - (b) (6 points) Find a formula for $T(\mathbf{x_1}, \mathbf{x_2})$.
- 5. (18 points) Let Q(x, y) be the statement x + y = x y. Determine the truth value of each of these statements if the universe of discourse for both variables consists of all integers.
 - (a) Q(1,1)
 - (b) Q(2,0)
 - (c) $\forall y Q(1,y)$
 - (d) $\exists x Q(x,2)$
 - (e) $\exists x \exists y Q(x, y)$
 - (f) $\forall x \exists y Q(x, y)$
 - (g) $\exists y \forall x Q(x,y)$
 - (h) $\forall y \exists x Q(x, y)$
 - (i) $\forall x \forall y Q(x,y)$
- 6. (10 points) How many numbers must be selected from the first 12 positive integers to guarantee that at least three pairs of these numbers add up to 13?
- 7. (10 points) A string that contains only 0s and 1s is called a binary string.
 - (a) (5 points) Find a recurrence relation for the number of binary strings of length n that contain a pair of consecutive 0s.
 - (b) (2 points) What are the initial conditions?
 - (c) (3 points) How many binary strings of length 7 do not contain two consecutive 0s?
- 8. (12 points) A simple graph is called regular if every vertex of this graph has the same degree. The complementary graph \overline{G} of a simple graph G has the same vertices as G. Two vertices are adjacent in \overline{G} if and only if they are not adjacent in G.
 - (a) (4 points) How many vertices does a regular graph of degree 6 with 36 edges have?
 - (b) (4 points) If G is a simple graph with 50 edges and \overline{G} has 16 edges, how many vertices does G have?
 - (c) (4 points) If the simple graph G has x vertices and y edges, how many edges does \overline{G} have?