國立中正大學 112 學年度碩士班招生考試試題

科目名稱:生物化學

本科目共6頁 第1頁

系所組別:生物醫學科學系生物醫學

A. Multiple c	choice question	(50%, 2% each;	one correct answer only)
---------------	-----------------	----------------	--------------------------

- 1. The chirality of an amino acid results from the fact that its α carbon:
 - A) has no net charge.
 - B) is a carboxylic acid.
 - C) is bonded to four different chemical groups.
 - D) is in the L absolute configuration in naturally occurring proteins.
 - E) is symmetric.
- 2. The formation of a peptide bond between two amino acids is an example of a(n) _____ reaction.
 - A) cleavage
 - B) condensation
 - C) group transfer
 - D) isomerization
 - E) oxidation reduction
- 3. The average molecular weight of the 20 standard amino acids is 138, but biochemists use 110 when estimating the number of amino acids in a protein of known molecular weight. Why?
 - A) The number 110 is based on the fact that the average molecular weight of a protein is 110,000, with an average of 1,000 amino acids.
 - B) The number 110 reflects the higher proportion of small amino acids in proteins, as well as the loss of water when the peptide bond forms.
 - C) The number 110 reflects the number of amino acids found in the typical small protein; only small proteins have their molecular weight estimated this way.
 - D) The number 110 considers a relatively small number of nonstandard amino acids.
 - E) The number 138 represents the molecular weight of conjugated amino acids.
- 4. All of the following are considered "weak" interactions in proteins, except:
 - A) hydrogen bonds.
 - B) hydrophobic interactions.
 - C) ionic bonds.
 - D) peptide bonds.
 - E) van der Waals forces.
- 5. An α helix would be destabilized most by:
 - A) an electric dipole spanning several peptide bonds throughout the α helix.
 - B) interactions between neighboring Asp and Arg residues.
 - C) interactions between two adjacent hydrophobic Val residues.
 - D) the presence of an Arg residue near the carboxyl terminus of the α helix.
 - E) the presence of two Lys residues near the amino terminus of the α helix.

國立中正大學112學年度碩士班招生考試試題

目名稱:生物化學 所組別:生物醫學科學系生物	器學		本科	日共 6	頁 匀	第 4
. B-form DNA in vivo is a		Å in diameter, with a rise of		Å ner hase nair		
A) left; 20; 3.9	·			_11 por 0	изо ра	и.
B) right; 18; 3.4				ži.		2
C) right; 18; 3.6						
D) right; 20; 3.4						
E) right; 20; 3.6						
		*				
Chargaff's rules state that in typical	DNA:	· · · · · · · · · · · · · · · · · · ·				
A) A = G.						
B) A = C.			*)			
C) A = U.	teta					
D) A + T = G + C.		¥				
E) $A + G = T + C$.						
, ¥					5.4	
The nucleic acid bases:		¥				
A) absorb ultraviolet light maximally	at 280 nm.					
B) are all about the same size.						
C) are relatively hydrophilic.						
) are roughly planar.			1			**
E) can all stably base-pair with one ar	nother.					
	3					
An integral membrane protein can be	extracted with:					
a) a buffer of alkaline or acid pH.		9 m				
3) a chelating agent that removes div	alent cations.					
c) a solution containing detergent.						
) a solution of high ionic strength.	3					
) hot water.						
	25					
The fluidity of the lipid side chains in	the interior of a b	ilayer is generally increase	ed by:		ž	
) a decrease in temperature.			- 3			
) an increase in fatty acyl chain leng	th.	9				
) an increase in the number of double		ids.				
) an increase in the percentage of ph						
) the binding of water to the fatty acy		* g *				

國立中正大學 112 學年度碩士班招生考試試題

科目名稱:生物化學

本科目共6頁第5頁

系所組別:生物醫學科學系生物醫學

- 21. Which of the following does not involve cyclic AMP?
 - A) Regulation of glycogen synthesis and breakdown
 - B) Regulation of glycolysis
 - C) Signaling by acetylcholine
 - D) Signaling by epinephrine
 - E) Signaling by glucagon
- 22. For the reaction A \rightarrow B, the K_{eq} ' is 10^4 . If a reaction mixture originally contains 1 mmol of A and no B, which one of the following must be true?
 - A) At equilibrium, there will be far more B than A.
 - B) The rate of the reaction is very slow.
 - C) The reaction requires coupling to an exergonic reaction in order to proceed.
 - D) The reaction will proceed toward B at a very high rate.
 - E) $\Delta G^{\prime o}$ for the reaction will be large and positive.
- 23. The anaerobic conversion of 1 mol of glucose to 2 mol of lactate by fermentation is accompanied by a net gain of:
 - A) 1 mol of ATP.
 - B) 1 mol of NADH.
 - C) 2 mol of ATP.
 - D) 2 mol of NADH.
 - E) none of the above.
- 24. Which of the following is a cofactor in the reaction catalyzed by glyceraldehyde 3-phosphate dehydrogenase?
 - A) ATP
 - B) Cu²⁺
 - C) heme
 - D) NAD+
 - E) NADP+
- 25. The oxidation of 3 mol of glucose by the pentose phosphate pathway may result in the production of:
 - A) 2 mol of pentose, 4 mol of NADPH, and 8 mol of CO2.
 - B) 3 mol of pentose, 4 mol of NADPH, and 3 mol of CO2.
 - C) 3 mol of pentose, 6 mol of NADPH, and 3 mol of CO₂.
 - D) 4 mol of pentose, 3 mol of NADPH, and 3 mol of CO2.
 - E) 4 mol of pentose, 6 mol of NADPH, and 6 mol of CO2.

國立中正大學 112 學年度碩士班招生考試試題

科目名稱:生物化學

本科目共6頁第6頁

系所組別:生物醫學科學系生物醫學

B. 問答題(50%)

- 1. Either allosteric control of enzyme activity or enzyme induction/repression can be used to regulate the metabolic rates of cells. Which control mechanism should be the most useful to adjust to rapid changes in conditions? Explain your answer. (5%)
- 2. List three proteins that can be activated and then function as a GTP-GDP exchange factor for activation of G protein or Ras. (6%)
- 3. Give the steps that produce CO_2 in the citric acid cycle. (4%)
- 4. The bacterium *E. coli* can grow at 20 °C or at 40 °C. At which growth temperature, you would expect the membrane phospholipids to have a higher ratio of unsaturated to saturated fatty acids. Why? (5%)
- What is the chemiosmotic model proposed by Peter Michell for ATP synthesis in oxidative phosphorylation? (5%)
- 6. What compounds would accumulate in an individual with beriberi? (2%) why? (2%)
- 7. Animals cannot convert fatty acids to glucose. Why? (5%)
 - (a) hypoxanthine-guanine phosphoribosyltransferase (b) adenosine deaminase (c) glucuronyl bilirubin transferase (d) tyrosine 3-monooxygenase (e) phenylalanine hydroxylase (f) methionine synthase (h) branched-chain α-keto acid dehydrogenase (g) cystathionine β-synthase Match the following disease caused by the deficiency of above enzyme: (1) maple syrup urine disease (1%) (2)albinism (1%) (3)Lesch-Nyhan syndrome (1%) jaundice (1%) (4)
- 9. We require fats and proteins in our diets. Why? (6%)

homocystinuria (1%) phenylketonuria (1%)

- 10. Calculate the number of ATP molecules obtained from the anaerobic conversion of the following compounds to lactate in liver:
 - (a) glucose (1%)

(5)

(6)

- (b) fructose (1%)
- (c) mannose (1%)
- (d) galactose (1%)