試題

[第3節]

科目名稱	有機無機化學
系所組別	化學暨生物化學系

一作答注意事項-

- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是否相符。
- 1. 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、 畫記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。

科目名稱:有機無機化學

本科目共 4 頁 第 1 頁

系所組別:化學暨生物化學系

Inorganic Chemistry (共 50 分):

1) Draw Lewis dot structure, indicating the molecular shape based on reasonable formal charge distribution, and determine the point group for each of the following. (note: show lone pairs, chemical bonds, and give resonance structures if necessary) (8 分)

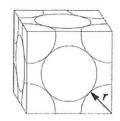
- (1-1) I_3^-
- (1-2) XeO₃F₂
- (1-3) SeOCl₂
- $(1-4) NO₂^{-}$

2) Determine whether the following complexes are optical active or not? (6 3)

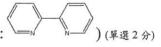
$$(2-1) \qquad \qquad (2-2) \qquad \qquad (2-3) \qquad \qquad (2-3) \qquad (2-3)$$

3) XeOF₄ adopts a $C_{4\nu}$ point group. Answer the following questions.

C_{4v}	E	$2C_{4}$	C_2	$2\sigma_v$	$2\sigma_d$		0
A_1	1	1	1	1	1	2	Ĭ
A_2	1	1	1	-1	-1	R_z	FXe
B_1	1	-1	1	1	-1		F
B_2	1	-1	1	-1	1		
E	2	0	-2	0	0	$(x, y), (R_x, R_y)$	
						ST. O CONTOURNED AND PART	


- ,,F —F
- (3-1) Based on all the motions of the atoms in XeOF₄, obtain a reducible representation (Γ). (2 \Re)
- Reduce this representation (Γ) to its component irreducible representations. (2 \Re) (3-2)
- Classify these representations, indicating which are for translational, rotational and vibrational (3-3)motions, respectively. (3分)
- 4) Which of the following are paramagnetic? (複選3分)
- (a) NO^{+} (b) NO_{2} (c) B_{2} (d) C_{2}^{2-} (e) O_{2}^{2-} (f) O_{2} (g) O_{2}^{+} (h) O_{3}

科目名稱:有機無機化學


本科目共 4 頁 第 2 頁

系所組別:化學暨生物化學系

5) The atoms occupy 52.4% of the total volume in a primitive cubic structure in which all the atoms are identical. Calculate the percentage of occupation by the atoms in a face-centered cubic structure. (4 分)

- 6) Determine the number of unpaired electrons, effective magnetic moment ($\mu_{\text{eff}} = g\sqrt{S(S+1)}$), and ligand field stabilization energy (LFSE, in Δ_0) for $[Cr(CN)_6]^{4-}$ and $[Co(NO_2)_6]^{4-}$, respectively. Both cyanide- and nitro-ligands are strong field. (6分)
- 7) For p^3 electronic configuration, there are 20 microstates and the lowest-energy term is ${}^4S_{3/2}$. What is the number of microstates and the lowest-energy term of p^1d^1 configuration? (4 $\hat{\pi}$)
- 8) Which of the following does not obey 18-electron rule? (2,2'-bipy:

- $(\eta^3-C_5H_5)(\eta^5-C_5H_5)Fe(CO)$ (b) $(\eta^5-C_5H_5)Ir(C_2H_4)_2$ (a)
- (c) $[Rh(2,2'-bipy)_2Cl]^+$

- (d) $Co_2(\mu_2-CO)_2(CO)_6$
- (e) $[(\eta^3-C_3H_5)(\eta^5-C_5H_5)Mn(CO)]^{-1}$
- 9) Draw the structures of the products in the brackets [].

(9-2) (2分)

$$[Mn(CO)_5]^- + (\eta^5 - C_5H_5)Fe(CO)_2Br \longrightarrow Br^- + []$$

(9-3) 1,2 insertion (2分)

(9-4) oxidative addition (2分)

$$trans$$
-Ir(CO)Cl(PPh₃)₂ + H₂

科目名稱:有機無機化學

本科目共 4 頁 第 3 頁

系所組別:化學暨生物化學系

有機化學 (共50分):

1. (20 points, 2 points each) Predict the major product of each step in the following reactions:

CI
$$(2)$$
 heat (3) H_2O (1) NaN_3 (2) $heat$ (3) H_2O (3) H_2O (3) H_2O

2. (12 points, 4 points each) Please provide the reasonable mechanism for the following reactions:

(a)
$$O$$
 $NaOH$ O O O

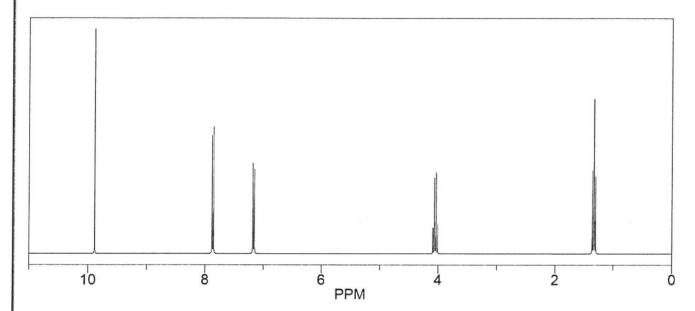
(c) Isoborneol is converted into camphene on treatment with dilute sulfuric acid. Propose a mechanism for the reaction, which involves a carbocation rearrangement.

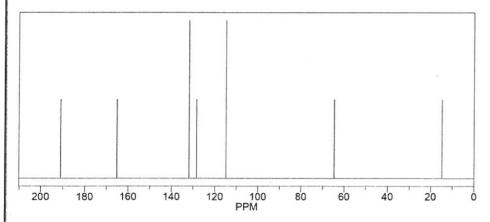
3. (12 points, 4 points each)

(a) Suggest an efficient route for the synthesis of the following compound from any starting material containing four or fewer carbons, an acetoacetic ester, a malonic ester, and any inorganic reagents.

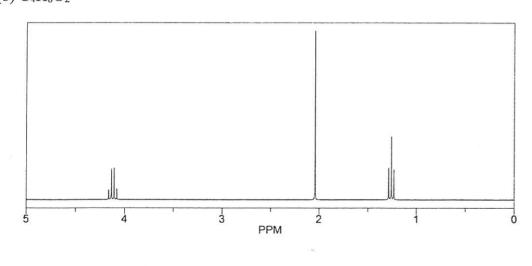
(b) Show how p-chlorotoluene could be converted to p-ClC₆H₄CH(OH)CO₂H.

科目名稱:有機無機化學


本科目共 4 頁 第 4 頁


系所組別:化學暨生物化學系

(c) Starting with benzyl bromide, show how you would synthesize the following compound: C₆H₅CH=CH-CH=CHC₆H₅


4. (6 points, 3 points each) please provide the structure of the compound based on the following spectra.

(a) $C_9H_{10}O_2$

(b) C₄H₈O₂

