國立中正大學 112 學年度碩士班招生考試

試題

[第2節]

科目名稱	機率與統計
系所組別	數學系統計科學

一作答注意事項-

- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是否相符。
- 1. 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、 畫記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。

國立中正大學 112 學年度碩士班招生考試試題

科目名稱:機率與統計

本科目共 1 頁 第 1 頁

系所組別:數學系統計科學

- 1. (10%) X has mean μ and variance σ^2 . If a and b are constants and Y = aX + b, find its mean and variance.
- 2. (10%) If $E(X^n) = 0.8, \forall n \in \mathbb{N}$, find P(X < 1).
- 3. (10%) Let X denote that tangent of an angle chosen at random from $(-\frac{\pi}{2}, \frac{\pi}{2})$, what is the p.d.f. of X?
- 4. (10%) Let $X \mid P = p \sim Bin(n, p)$ and $P \sim Beta(\alpha, \beta)$, what is the conditional distribution of $P \mid X = x$?
- 5. (10%) Suppose that X and Y are independent gamma random variables with $E(X) = \frac{\alpha}{\lambda}$ and $E(Y) = \frac{\beta}{\lambda}$. What is the distribution of $\frac{Y}{X+Y}$?
- 6. (10%) Let $X_1, ..., X_n$ be a random sample from a distribution with the p.d.f. $f(x; \theta) = \frac{3\theta^3}{x^4}, x \ge \theta$. Find a one-dimensional sufficient statistic for θ .
- 7. (10%) Let (X_i, Y_i) be independent pairs, i = 1, 2, ..., n, with X_i and Y_i are independent exponential random variables with $E(X_i) = \frac{1}{\theta \lambda}$ and $E(Y_i) = \frac{1}{\lambda}$. Find the maximum likelihood estimators for θ and λ .
- 8. (10%) Let $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X})^2$ be the sample mean and variance of a random sample from a Poisson distribution with mean λ . What is $E(S^2 | \bar{X})$?
- 9. (10%) Let $X_1,...,X_n$ be a random sample from a normal distribution $N(\mu,\sigma^2)$, where μ is known. Find a level $(1-\alpha)$ confidence interval for σ .
- 10. (10%) Refer to the previous question, find a uniformly most powerful test with significance level α for testing $H_0: \sigma \leq \sigma_0$ vs. $H_1: \sigma > \sigma_0$.