# 國立中正大學 112 學年度碩士班招生考試

## 試題

### [第2節]

| 科目名稱 | 線性代數    |
|------|---------|
| 系所組別 | 數學系應用數學 |

#### 一作答注意事項一

- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是否相符。
- 1. 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、 畫記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。

#### 國立中正大學 112 學年度碩士班招生考試試題

科目名稱:線性代數

本科目共 2 頁 第 1 頁

系所組別:數學系應用數學

Problem 1 (12 points) Find an orthogonal basis for the row space of the matrix

$$A = \begin{bmatrix} 2 & -5 & 1 \\ 4 & -10 & 2 \\ 4 & -1 & 2 \\ -2 & 14 & -1 \end{bmatrix}$$

Problem 2 (10 points) Let  $T_1: \mathbb{R}^3 \to \mathbb{R}^2$  be the linear transformation given by:

$$T_1\left(\left[\begin{array}{c} x_1\\ x_2\\ x_3 \end{array}\right]\right) = \left[\begin{array}{c} 2x_1 - x_2\\ 3x_2 - 4x_3 \end{array}\right]$$

and let  $T_2: \mathbb{R}^2 \to \mathbb{R}^2$  be the geometric linear transformation which refects a point  $x = (x_1, x_2) \in \mathbb{R}^2$  across the line  $x_1 = x_2$ . Find the standard matrix A of the composition  $T = T_2^{-1} \circ T_1$ .

Problem 3 (14 points) Let 
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 4 & 3 \\ 0 & 1 & 2 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$
.

- (a) (5 points) Find a basis for the column space of A.
- (b) (5 points) Find a basis for the null space of A.
- (c) (4 points) Find complete solution to  $Ax = \begin{bmatrix} 8 \\ 4 \\ 2 \end{bmatrix}$ .

Problem 4 (12 points) Find the minimal polynomial p(x) of the matrix

$$A = \left[ \begin{array}{ccc} 2 & -1 & 1 \\ 0 & 2 & 0 \\ 0 & -1 & 3 \end{array} \right]$$

and use p(x) to find  $A^{-1}$ .

#### 國立中正大學 112 學年度碩士班招生考試試題

科目名稱:線性代數

本科目共2頁 第2頁

系所組別:數學系應用數學

Problem 5 (12 points) Let 
$$B = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$
,  $C = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix}$ ,  $O_2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$  and  $A$  is the block

matrix 
$$\begin{bmatrix} B & O_2 \\ O_2 & C \end{bmatrix}$$
.

- (a) (6 points) Find orthogonal matrix Q such that  $Q^TBQ$  is a diagonal matrix.
- (b) (6 points) Compute  $A^{50}$ .

Problem 6 (40 points) Determine the following statements are true or false. Please give a proof if true or counterexample if false.

- (a) (8 points) If A is similar to B and B is orthogonal, then A must be orthogonal.
- (b) (8 points) All  $3 \times 3$  skew symmetric matrices are singular (Note: A is skew symmetric if  $A^T = -A$ ).
- (c) (8 points) The set of  $2 \times 2$  diagonalizable real matrices is a subspace of the set of all  $2 \times 2$  real matrices, with scalar multiplication and matrix addition defind entrywise.
- (d) (8 points) If A is an  $m \times n$  matrix, then the null space of  $A^T A$  is equal to the null space of A.
- (e) (8 points) If  $L: \mathbb{R}^6 \to M_{23}$  is a linear transformation which is onto, then L is invertible.