國立中央大學 112 學年度碩士班考試入學試題 所別: 光電類 共 2 頁 第 1 頁 科目: 電子學 本試題共五大題計算題,無計算過程不予計分。答案請標示單位。 - 1. Following figure shows an instrumentation amplifier. - (a) Please DERIVE the gain of this amplifier. No points are given if you provide the result without derivation process. (10%) - (b) As $R_1 = 5 \text{ k}\Omega$, $R_2 = 2 \text{ k}\Omega$, $R_3 = 4 \text{ k}\Omega$, $R_g = 500 \Omega$, $V_1 = 4.5 \text{ V}$ and $V_2 = 4.25 \text{ V}$, calculate V_0 . (5%) 2. Please design an op-amp circuit to get an output voltage described by the following equation: (10%) $$V_O = \frac{R_f}{R_1} V_1 + \frac{R_f}{R_2} V_2 + \frac{R_f}{R_3} V_3$$ - 3. The figure below shows an active filter. Please answer the following questions. - (a) Please DERIVE the transfer function $H(\omega) = V_o/V_i$ of this circuit. (10%) - (b) Which type of filter is this circuit? What is the corner frequency? (10%) - (c) As $R_1 = R_2 = 100 \Omega$, $C_1 = C_2 = 0.1 \mu F$ and $V_i = 5 cos(10000t)$, please estimate the amplitude of V_0 . (5%) 注意:背面有試題 所別: 光電類 共多頁 第2頁 科目: 電子學 - 4. For the following circuit, n-MOSFET $Q_1 \sim Q_4$ works as a MOS differential pair with active load while Q_5 and Q_6 work as a current mirror. These transistors are identical with Vt = 1 V, $k_n = \mu_n C_{ox}(W/L) = 1$ mA/V², $V_A = 100$ V, the conducting current at $R_{REF} = 2$ mA, and $V_{DD} = V_{SS} = 5$ V. - (a) Please find the corresponding R_{REF}. (5%) - (b) If a common-mode signal v_{icm} = 1 mV is applied to both v_{G1} and v_{G2} , how much small-signal current is induced through Q_6 ? If a 10 k Ω is connected to the load, how much small-signal current is through the load? Assume all the MOSFETs are in the saturation regime and perfectly matched. The channel length modulation of the differential pair can be ignored. (10%) - (c) Please find the output resistance (at v_o). (5%) - (d) How about the gain (A_v) at the output with a 10 k Ω load? (5%) Figure 4 所別: 光電類 共2頁 第2頁 科目: 電子學 - 5. A BJT transistor is connected to the cascode MOS current mirror as shown below. Assume all MOSFETs are matched. The current conducted by BJT is followed by the exponential relationship $V_{BE}=V_T\times\ln(I/I_S)$ and $V_{BE}=0.7V$ at I=1mA. Please evaluate the following at room temperature ($V_T=25\text{mV}$): - (a) If the conducting current I = 0.1 mA, please find the resistance R_{ref} ? (5%) - (b) If the $k_n = \mu_n C_{ox}(W/L) = 0.2$ mA/V² and $V_t = 1$ V for all the MOSFETs, please find the corresponding V_1 and V_2 . (10%) - (c) Followed by (b), please find transconductance g_m of M4 and the resistance R_{out} at the drain port of MOSFET M4. Assume the channel length modulation induced resistance r_0 =20 k Ω . (10%) Figure 5