國立中央大學 112 學年度碩士班考試入學試題

所別: 統計研究所碩士班

共_/ 頁 第_/ 頁

科目: 數理統計

計算題應詳列計算過程,無計算過程者不予計分

- 1. Let X_1 and X_2 be independent random variables from exponential distribution with mean $1/\lambda$. Let $U = X_1 X_2$ and $V = X_2$.
 - (a) Find the joint probability density function (pdf) of U and V. (5%)
 - (b) Find the pdf of U. (5%)
 - (c) What is the conditional expected value of V given U=u. (10%)
- 2. Let X_i be the number of return visits for patient i until he/she is recovered from a disease, i = 1, 2, ..., n. Let θ be the probability of recovery.
 - (a) Find the probability mass function (pmf) of the X_i . (5%)
 - (b) Find the maximum likelihood estimate (mle) of θ , denoted by $\hat{\theta}$, based on $X_1, ..., X_n$. (5%)
 - (c) Is $\hat{\theta}$ unbiased for θ ? (5%)
 - (d) Suppose that Y_i is the right-censored X_i for i=1, 2, ..., n, where

$$Y_i = X_i, X_i = 1, ..., r$$

= r + 1, $X_i = r+1, r+2,...$

Find the pmf of the Y_i . (6%)

- (e) Find the mle of θ , denoted by $\hat{\theta}_c$, based on $Y_1, ..., Y_n$. (6%)
- 3. Elements in a population are consecutively labeled from 1 to an integer θ , the size of the population. Let $X_1, ..., X_n$ be a random sample from the population with pmf

$$g(x; \theta) = 1/\theta$$
, $x=1, 2, ..., \theta$
= 0, otherwise.

- (a) Find the *mle* of θ based on $X_1, ..., X_n$, denoted by $\hat{\theta}$. (5%)
- (b) Find a test for H_0 : $\theta = \theta_0$ versus H_1 : $\theta = \theta_1$ ($\theta_1 > \theta_0$) based on $\hat{\theta}$. Specify the rejection region at significance level α . (10%)
- (c) Find the sample size required for the test in (b) so that the power reaches 1- β when $\theta_1 = \theta_0 + \Delta$. (10%)
- (d) Find the sample size for a level 0.05 test in (b) to reach 1- β = 0.90 when Δ =10. (8%)
- 4. Let $X_1, ..., X_n$ be independent Bernoulli random variables with

$$p = P(X_1 = 1) = 1 - P(X_1 = 0).$$

- (a) Find the mle of p^2 based on $X_1, ..., X_n$. (10%)
- (b) Construct a level $(1-\alpha)$ confidence interval for p^2 . (10%)