國立中央大學 112 學年度碩士班考試入學試題 所別: 統計研究所碩士班 共_/ 頁 第_/ 頁 科目: 數理統計 計算題應詳列計算過程,無計算過程者不予計分 - 1. Let X_1 and X_2 be independent random variables from exponential distribution with mean $1/\lambda$. Let $U = X_1 X_2$ and $V = X_2$. - (a) Find the joint probability density function (pdf) of U and V. (5%) - (b) Find the pdf of U. (5%) - (c) What is the conditional expected value of V given U=u. (10%) - 2. Let X_i be the number of return visits for patient i until he/she is recovered from a disease, i = 1, 2, ..., n. Let θ be the probability of recovery. - (a) Find the probability mass function (pmf) of the X_i . (5%) - (b) Find the maximum likelihood estimate (mle) of θ , denoted by $\hat{\theta}$, based on $X_1, ..., X_n$. (5%) - (c) Is $\hat{\theta}$ unbiased for θ ? (5%) - (d) Suppose that Y_i is the right-censored X_i for i=1, 2, ..., n, where $$Y_i = X_i, X_i = 1, ..., r$$ = r + 1, $X_i = r+1, r+2,...$ Find the pmf of the Y_i . (6%) - (e) Find the mle of θ , denoted by $\hat{\theta}_c$, based on $Y_1, ..., Y_n$. (6%) - 3. Elements in a population are consecutively labeled from 1 to an integer θ , the size of the population. Let $X_1, ..., X_n$ be a random sample from the population with pmf $$g(x; \theta) = 1/\theta$$, $x=1, 2, ..., \theta$ = 0, otherwise. - (a) Find the *mle* of θ based on $X_1, ..., X_n$, denoted by $\hat{\theta}$. (5%) - (b) Find a test for H_0 : $\theta = \theta_0$ versus H_1 : $\theta = \theta_1$ ($\theta_1 > \theta_0$) based on $\hat{\theta}$. Specify the rejection region at significance level α . (10%) - (c) Find the sample size required for the test in (b) so that the power reaches 1- β when $\theta_1 = \theta_0 + \Delta$. (10%) - (d) Find the sample size for a level 0.05 test in (b) to reach 1- β = 0.90 when Δ =10. (8%) - 4. Let $X_1, ..., X_n$ be independent Bernoulli random variables with $$p = P(X_1 = 1) = 1 - P(X_1 = 0).$$ - (a) Find the mle of p^2 based on $X_1, ..., X_n$. (10%) - (b) Construct a level $(1-\alpha)$ confidence interval for p^2 . (10%)