國立臺北大學 112 學年度碩士班一般入學考試試題

系(所)組別:金融與合作經營學系

科 目:統計學

第1頁 共1頁

☑可 □不可使用計算機

- 1. (15%) Let $f(x; \theta) = (1/\theta)x^{(1-\theta)/\theta}, 0 < x < 1, 0 < \theta < \infty$.
 - (1)(10%) Show that the maximum likelihood estimator of θ is $\hat{\theta} = -(1/n) \sum_{i=1}^{n} \ln(X_i)$.
 - (2)(5%) Show the $E(\hat{\theta}) = \theta$ and thus $\hat{\theta}$ is an unbiased estimator of θ .
- 2. (10%) Let X have an exponential distribution with mean $\theta > 0$. Show that P(X > x + y | X > x) = P(X > y).
- 3. (15%) Let X_1 , X_2 be a random sample of size n=2 from a distribution with p.d.f. $f(x)=4x^3$, 0 < x < 1, zero elsewhere. Given the ratio $Y = X_1/X_2$, find
 - (1)(10%) E(Y). (Round the answer to 4 decimal places)
 - (2)(5%) Var(Y). (Round the answer to 4 decimal places)
- 4. (10%) A die was cast n = 120 independent times and the following data resulted:

Spots up	1	2	3	4	5	6
Frequency	ь	20	20	20	20	40-b

If we use a chi-square test, for what values of b would the hypothesis that the die is unbiased be rejected at the 0.025 significance level?

$$(\chi^2_{(5),\alpha=0.025} = 12.8; \ \chi^2_{(6),\alpha=0.025} = 14.4; \ \chi^2_{(5),\alpha=0.05} = 11.1; \ \chi^2_{(6),\alpha=0.05} = 12.6)$$

5. (15%)An OLS regression has the following data: $\bar{X} = 3$; $\bar{Y} = 4$;

$$\sum (X - \bar{X})^2 = 32$$
; $\sum (Y - \bar{Y})^2 = 29$; $\sum (X - \bar{X})(Y - \bar{Y}) = 28$;

The sample observation size is 10. Please calculate:

- (1)(5%)The regression line $\hat{Y} = \hat{\alpha} + \hat{\beta}X$
- (2)(5%)The variance of residuals $\hat{\sigma}^2$.
- (3)(5%)The t-statistic of the test H_0 : $\beta = 0$
- 6. (20%)Throwing two fair dice, each has six faces (1,2,3,4,5,6 points). X_1 , X_2 represent the number of results respectively. $Y=\max(X_1,X_2)$ Please calculate:
 - (1) (10%)E(Y) °
 - (2) (10%)Var(Y) •
- 7. (15%)There are N students in a class. How large N will let the probability of at least two students having the same birthday exceed 90%? Note: A year has 365 days.

[Hint: You may use the following characters:

- (1) $e^{-x} \ge 1 x$; (2) $e^{-1} = 0.3678$; $\ln(0.1) = -2.30259$
- (3) $m \times (m+1) \times (m+2) \dots (m+k) \le \left(m + \frac{k}{2}\right)^{k+1}$