國立成功大學 112學年度碩士班招生考試試題

編 號: 349

系 所: 關鍵材料碩士學位學程

科 目:普通物理學

日期:0207

節 次:第3節

備 註:可使用計算機

國立成功大學 112 學年度碩士班招生考試試題

系 所:關鍵材料碩士學位學程

考試科目:普通物理學

考試日期:0207, 節次:3

第1頁,共4頁

※ 考生請注意:本試題可使用計算機。請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 1-7 題為單選題 (每題 4 分,答錯不倒扣。)
- 1) A circular object of mass m and of radius R rolls smoothly (without sliding) along a frictional incline, as shown below. In the following, which type of the object will roll with the highest acceleration?
- (A) A disk (B) A solid sphere (C) A spherical shell (D) A ring (E) The same

- 2) The power radiated from a black-body is found to be 10 kW at 1000 K. What is the power radiated from the same black-body at 2000 K?
- (A) 10 kW (B) 20 kW (C) 40 kW (D) 80 kW (E) 160 kW
- 3) A tank is filled with water of mass density ρ_{ν} , as shown below. What is the speed ν of the water emerging from the small hole? Assume that the height of h remains unchanged all the time.
- (A) 4.95 m/s (B) 7 m/s (C) 9.9 m/s (D) 14 m/s (E) 49 m/s

- 4) Assuming that the electric field intensity E = 10x i + 10y j + 5 k (V/m), find the total electric charge contained inside a cubical volume of 20 cm on a side centered symmetrically at the origin.
- (A) 20 C (B) 0.16 C (C) 1.42×10⁻¹² C (D) 1.77×10⁻¹⁰ C (E) 8.86×10^{-11} C
- 5) A triangular prism shown below has an index of fraction n=2. What is the critical angle θ_c for the light from the prism to air?
- (A) 30° (B) 37° (C) 45° (D) 53° (E) 60°

6) A time-dependent voltage source $V(t) = \pi t^3 + 2$ Volt is connected across a parallel-plate capacitor with separation d = 3 mm and surface area A = 1 m². What is the value of the <u>displacement current</u> in Ampere between the plates at t = 6 sec? (A) 10^{-2} (B) 10^{-4} (C) 10^{-6} (D) 10^{-8} (E) 10^{-10}

國立成功大學 112 學年度碩士班招生考試試題

系 所:關鍵材料碩士學位學程

考試科目:普通物理學

考試日期:0207, 節次:3

第2頁,共4頁

7) For an electromagnetic wave with the magnitude of electric field E_o , the corresponding average value of the Poynting vector is S_o . If the field becomes $2E_o$, what is the new average value of the Poynting vector?

(A) S_o (B) $(1.414)S_o$ (C) $2S_o$ (D) $4S_o$ (E) $8S_o$.

8-19 題為簡答題 (每題 4 分。請直接寫下答案。數值答案要附上單位。)

8) As shown below, a 2 kg block that rests on a frictionless surface is attached to a horizontal spring with a force constant k = 202 N/m. When a 20 g bullet with speed of 404 m/s is shot into the block and embedded, find the <u>amplitude</u> of the resulting simple harmonic motion (SHM) of the block with the embedded bullet.

- 9) Write down the equation of motion of the above SHM.
- 10) What is the ideal efficiency of a Carnot engine operating between 27 and 627 °C?
- 11) An ideal gas of one mole at 400 K experiences a <u>free expansion</u> from volume V_1 to $V_2 = 2V_1$, what is the value of the change of the entropy?
- 12) Determine the magnetic field (magnitude and direction) at P due to the current i in the wire shown below.

- 13) What is the magnitude of the magnetic dipole moment μ of the corresponding loop shown above?
- 14) A dc current i_a flows through an infinitely long, straight wire, as shown below. What is the magnitude of the <u>net magnetic force</u> exerted on the square loop which carries a clockwise current i_b ?

國立成功大學 112 學年度碩士班招生考試試題

系 所:關鍵材料碩士學位學程

考試科目:普通物理學

考試日期:0207,節次:3

第3頁,共4頁

15) An electric dipole has a dipole moment of 1.6×10^{-9} C-m. Find the ratio of the electric potential at the distances of 0.6 m and 0.9 m from the center of the dipole situated on a line making an angle of 60° with the dipole axis. i.e. V(r = 0.6 m)/V(r = 0.9 m) = ?

16) Three resistors are connected to a battery with an output voltage of 4 V as shown below. Calculate the value of current I_2 in Ampere.

- 17) For a photoelectric effect experiment, the kinetic energy of the electron emitted from the surface of a metal is measured to be 2 eV. If the work function of the metal is 0.5 eV, what is the wavelength of the light used in this experiment?
- 18) Based on Bohr's model for a hydrogen atom, what is the emitted energy in eV for an electron moving from an orbital with quantum number n = 2 to another orbital with quantum number n = 1? Note that the limit for the Lyman series corresponds a transition energy of 13.6 eV.
- 19) What is the ratio of the wavelength between a photon (λ_{ph}) with energy of 54.4 eV and the de Broglie wavelength (λ_e) for an electron with a kinetic energy of 54.4 eV? i.e. $\lambda_{ph}/\lambda_e = ?$

20-21 題為計算題 (每題 12 分。計算題要寫計算過程,僅列式對給部份分數。)

20) (a) Determine the magnitude of the <u>electric field</u> at the center of the square with four point charges on the corners as shown below. (b) Determine the <u>electric potential</u> at the center of the square with four point charges on the corners as shown below. (c) Calculate the <u>total potential energy</u> of this four-charge system.

國立成功大學 112 學年度碩士班招生考試試題

系 所:關鍵材料碩士學位學程

考試科目:普通物理學

考試日期:0207,節次:3

第4頁,共4頁

21. The figure below shows a hypothetical speed distribution probability density P(v) = N(v)/N for a system of N gas particles. $P(v) = Av^2$ for $0 \le v \le v_0$; $P(v) = Av_0^2$ for $v_0 \le v \le 2v_0$; P(v) = 0 for $v > 2v_0$.

- (a) Express the coefficient A in terms of v_0 .
- (b) How many of the particles have speeds between 0 and v_o ?
- (c) Calculate the average speed of the particles with $v_o = 320$ m/s.
- (d) Find the root-mean-square velocity v_{rms} of this gas system with $v_o = 320$ m/s.

*Useful information:

- % Gravitational acceleration $g = 9.8 \text{ m/s}^2$
- \divideontimes Ideal gas constant R = 8.314 J/mol-K; Boltzmann constant $k = 1.38 \times 10^{-23}$ J/K.
- \times Electric permittivity in free space $\varepsilon_0 = 1/(4\pi \times 9 \times 10^9) = 8.85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2 \text{ or F/m}$
- **X** Magnetic permeability in free space $\mu_0 = 4\pi \times 10^{-7}$ T-m/A.
- \Re Bernoulli's equation: $p + \frac{1}{2}\rho v^2 + \rho gh = \text{constant}$
- M Momentum of inertia about the center of mass for a circular object of mass M and of radius R: A ring $I_{com} = MR^2$; A disk $I_{com} = MR^2/2$; A spherical shell $I_{com} = 2MR^2/3$; A solid sphere $I_{com} = 2MR^2/5$
- \divideontimes Magnetic field at the center of a circular arc of angle ϕ and of radius R with carrying current i:

$$B(0) = \frac{\mu_0 i}{2R} \left(\frac{\phi}{2\pi}\right)$$

- % Electron mass $m = 9.11 \times 10^{-31}$ kg
- \Re Planck constant $h = 6.63 \times 10^{-34}$ J-se
- $\approx e^{-1} \sim 0.37$; $ln2 \sim 0.69$; $ln3 \sim 1.1$; $ln5 \sim 1.6$; $ln10 \sim 2.3$