國立成功大學 112學年度碩士班招生考試試題

編 號: 243

系 所:企業管理學系

科 目:微積分

日期:0207

節 次:第3節

備 註:不可使用計算機

編號: 243

國立成功大學112學年度碩士班招生考試試題

系 所:企業管理學系

考試科目:微積分

第|頁,共2頁

考試日期:0207,節次:3

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

Part A: Multiple-Choice Questions (30 points, 10 points each)

- 1. Find the correct statement(s).
 - (a) Given functions f, g such that f(x) and f(x)+g(x) are both continuous at x=0, then g(x) is also continuous at x=0.
 - (b) Given functions f, g such that f(x) and $f(x) \cdot g(x)$ are both continuous at x = 0, then g(x) is also continuous at x = 0.
 - (c) Given function f such that |f(x)| is continuous at x = 0, then f(x) is also continuous at x = 0.
 - (d) Equation $x^3 + x^2 + x = 1$ has exactly one solution.
 - (e) Equation $x^2 = 2^x$ has exactly two solutions.
- 2. Given function $f(x) = xe^{-x/2}$.
 - (a) f(1) < f(3).
 - (b) Function f(x) is increasing on interval (0,1).
 - (c) Function f(x) reaches absolute maximum when x = 2.
 - (d) Graph of f(x) has an inflection point when x = 3.
 - (e) Function f(x) is concave upward on interval $(4, \infty)$.
- 3. Given function $f(x, y) = 8x^3 12xy + y^3$.
 - (a) Function f(x,y) has maximum rate of change at point $(-\frac{1}{2},0)$ in direction $(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$.
 - (b) Function f(x,y) has maximum rate of change at point $(-\frac{1}{2},2)$ in direction $(\frac{1}{\sqrt{2}},\frac{-1}{\sqrt{2}})$.
 - (c) Point (0,0) is a saddle point of f(x,y).
 - (d) Function f(x, y) reaches local minimum at (1, 2).
 - (e) Function f(x, y) reaches local maximum at (-1, -2).

Part B: Fill in the Blanks (40 points, 8 points each)

- 4. Evaluate the limit. $\lim_{x\to 0} \frac{1-\cos 2x}{\sin 3x \cdot \tan 4x} =$
- 5. Let $f(x) = \int_{\frac{1}{x}}^{x^2} \sqrt{1+t^3} dt$. Evaluate $f'(1) = \underline{\hspace{1cm}}$.

編號: 243

國立成功大學112學年度碩士班招生考試試題

系 所:企業管理學系

考試科目:微積分

第2頁,共2万

考試日期:0207, 節次:3

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

6. Evaluate the integral.
$$\int_{1}^{e} (\ln x)^{2} dx = \underline{\hspace{1cm}}$$

7. Evaluate the limit.
$$\lim_{x\to\infty} (3^x + x^3)^{3/x} = \underline{\hspace{1cm}}$$

8. Given the Maclaurin series as below. Find the value of $a_{101} = \underline{\hspace{1cm}}$

$$\sin(x)\cos(x) = a_0 + a_1x + a_2x^2 + \dots + a_{101}x^{101} + \dots$$

Part C: Show All Your Work (30 points, 10 points each)

- 9. The diameter (d=2r) and height (h) of a cylinder was both measured to be 10 cm with a possible error $(\Delta d, \Delta h)$ at most 0.05 cm. Use the differential to approximate the maximum error (ΔA) in computing the surface area $(A=2\pi r^2+2\pi rh)$.
- 10. Evaluate the integral by changing the order. $\int_0^1 \int_{2y}^2 e^{-x^2} dx dy$
- 11. If a company is planning to promote a product by spending x thousand dollars on television commercials and y thousand dollars on internet advertising, then the revenue is expected to increase by

$$f(x,y) = \frac{160 x}{x+3} + \frac{150 y}{y+5}$$

thousand dollars. Use the method of Lagrange multiplier to maximize the revenue under the budget constraint

$$g(x,y) = x + y = 100.$$