國立成功大學 112學年度碩士班招生考試試題

編 號: 233

系 所:統計學系

科 目: 數理統計

日期:0207

節 次:第2節

備 註:不可使用計算機

編號: 233

國立成功大學 112 學年度碩士班招生考試試題

系 所:統計學系 考試科目:數理統計

考試日期:0207,節次:2

第1頁,共1頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分

1. Let X_1, \ldots, X_n be a sample from a population with the Rayleigh density

$$f(x;\theta) = \frac{x}{\theta^2} \exp\left\{-\frac{x^2}{2\theta^2}\right\}, \ x, \theta > 0.$$

- (a) (5%) Construct a level α hypothesis test of H_0 : $\theta = 1$ versus H_1 : $\theta > 1$.
- (b) (10%) Find the 95% confidence interval of θ .
- 2. (15%, 5% for each) Let $X_1, \ldots, X_n, n \geq 2$, be independently and identically distributed with density

$$f(x;\theta) = \frac{1}{\sigma} \exp\left\{-(x-\mu)/\sigma\right\}, \ x \ge \mu,$$

where $\theta = (\mu, \sigma), -\infty < \mu < \infty, \sigma > 0$.

- (a) Find a method of moment estimator for θ .
- (b) Find the maximum likelihood estimator of θ .
- (c) Find the maximum likelihood estimator of $P_{\theta}[X_1 \geq t]$ for $t \geq \mu$.
- 3. (15%) Let X has a continuous uniform distribution on the interval $(0, 2\pi)$. Consider $Y = \sin^2(X)$. Find the cumulative density function (cdf) of Y.
- 4. (20%, 10% for each) Suppose X_1, X_2, \ldots are jointly continuous and independent, each distributed with marginal pdf f(x), where each X_i represents annual rainfall at a given location.
 - (a) Find the distribution of the number of years until the first year's rainfall, X_1 , is exceeded for the first time.
 - (b) Show that the mean number of years until X_1 is exceeded for the first time is infinite.
- 5. (20%, 10% for each) Suppose that $X_1, \ldots, X_n | \theta \stackrel{iid}{\sim} N(\theta, \sigma^2)$ where $\sigma > 0$ is known. Suppose $\theta \sim \mathcal{DE}(\lambda)$ where

$$\pi(\theta) = \frac{\lambda}{2} e^{-\lambda|\theta|}, \ \theta \in \mathbb{R}, \ \lambda > 0.$$

- (a) Find the posterior distribution of θ given X_1, \ldots, X_n .
- (b) Find a level 1α credible region for θ given X_1, \ldots, X_n .
- 6. (15%) Let X be any random variable, and g(x) and h(x) be any functions such that all of the E[g(X)], E[h(X)], and E[g(X)h(X)] exist. If assuming g(x) is a nondecreasing function and h(x) is a nonincreasing function, then prove that

$$E[g(X)h(X)] \le E[g(X)]E[h(X)].$$