國立臺灣科技大學 112 學年度碩士班招生試題

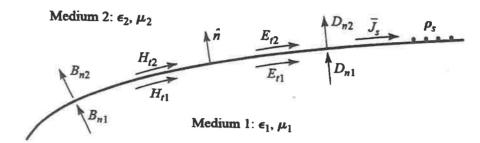
系所組別:光電工程研究所碩士班

科 目:電磁學

(總分為100分;所有試題務必於答案卷內頁依序作答,否則不予計分)

- 1. Charge Q_a is uniformly distributed over a thin spherical shell of radius a, and charge Q_b is uniformly distributed over a second spherical shell of radius b, with b > a. Please find the electric field intensity (\bar{E}) in the regions: (15%)
 - (a) R < a, (5%)
 - (b) a < R < b, (5%)
 - (c) R > b. (5%)
- 2. Let the electric potential $V(x, y) = e^x + f(x) y^2$ in a region of free space where the volume charge density $\rho_v = 0$. It is known that both the x-component of electric field (E_x) and V(x, y) are zero at the origin. Please find: $(/5^-)/0$
 - (a) f(x), (8%)
 - (b) V(x, y). (7%)
- 3. An electron having an initial velocity of $3.2 \times 10^7 \hat{i}$ (m/s) enters a uniform magnetic field of magnitude 1.3×10^{-3} (T) with a direction perpendicular to the electron's velocity. It leaves the uniform magnetic field region with velocity $-3.2 \times 10^7 \hat{j}$ (m/s). Please find: (20%)
 - (a) the direction of the magnetic field, (5%)
 - (b) the radius of curvature of the electron's path while in the magnetic field, (5%)
 - (c) the distance the electron traveled in the magnetic field, (5%)
 - (d) the time interval during which the electron is in the magnetic field. (5%)
 - (Charge of electron = -1.6×10^{-19} C, mass of electron = 9.1×10^{-31} kg)

國立臺灣科技大學 112 學年度碩士班招生試題


系所組別:光電工程研究所碩士班

科 目:電磁學

(總分為100分;所有試題務必於答案卷內頁依序作答,否則不予計分)

4. (20%)

Consider the sources and fields at the boundary between two mediums shown below. (a) If medium 1 and medium 2 are dielectric materials, please write down the boundary conditions for the sources and fields (10%) (b) If medium 1 is a perfect conductor and medium 2 is a dielectric material, please write down the boundary conditions for the sources and fields (10%)

5. (20%)

Consider the transmission line circuit shown below. (a) When the length l equals to $\lambda/4$, what should the impedance Z_q be that will make the reflection coefficient Γ zero? (10%) (b) When the length l equals to $\lambda/8$, what should the reflection coefficient Γ be? (10%)

$$Z_0$$
 Z_q Z_L

6. (10%)

Consider the plane wave normally incident on the dielectric medium from the free space shown below. Please write down the expressions for the reflection coefficient Γ and transmission coefficient T. (10%)

$$egin{aligned} ar{E}_i &= \hat{x} E_0 e^{-jk_0 z}, \ ar{H}_i &= g rac{1}{\eta_0} E_0 e^{-jk_0 z} \end{aligned}$$

