題號: 239

國立臺灣大學 112 學年度碩士班招生考試試題

科目:統計理論

節次: 4

題號: 239 共 2 頁之第 / 頁

1. (10 points) Let X_1, X_2, \ldots, X_5 be independent identically distributed (i.i.d.) from normal distribution $N(0, \sigma^2)$. Find the constant c so that

$$c \cdot \frac{X_1 - X_2}{\sqrt{X_3^2 + X_4^2 + X_5^2}}$$

has a Student's t-distribution. How many degrees of freedom are associated with this random variable?

2. (10 points) Let X_1, X_2, \ldots, X_n be a random sample from a normal distribution $N(0, \sigma^2)$, where the population variance $\sigma^2 > 0$ is unknown. Define

$$Q = \left(\frac{\overline{X}}{\sigma/\sqrt{n}}\right)^2 + \frac{(n-1)S^2}{\sigma^2},$$

where \overline{X} and S^2 are the sample mean and sample variance, respectively.

- (a) (5 points) Find the pdf of Q. Can it be used as a pivot?
- (b) (5 points) Use Q to find a $(1 \alpha) \times 100\%$ confidence interval for σ^2 .
- 3. (15 points) Let Y_1, Y_2, \ldots, Y_n be i.i.d. from one parameter exponential family with pdf or pmf $f(y|\theta)$ with the complete sufficient statistic $T(\mathbf{Y}) = \sum_{i=1}^n t(Y_i)$ where $t(Y_i) \sim \theta X$ and X is a known distribution with known mean E(X) and known variance V(X). Let $W_n = cT(\mathbf{Y})$ be an estimator of θ where c is a constant.
 - (a) (5 points) Find the mean square error (MSE) of W_n as a function of c.
 - (b) (5 points) Find the value of c that minimizes the MSE.
 - (c) (5 points) Find the uniformly minimum variance unbiased estimator (UMVUE) of θ
- 4. (15 points) Let X_1, X_2, \ldots, X_n be a random sample from a discrete random variables having probability mass function

$$f(x|\theta) = \frac{2x}{\theta(\theta+1)}, \ \ x \in \{1, 2, 3, \dots, \theta\};$$

for some integer $\theta \geq 1$.

- (a) (5 points) Find the maximum likelihood estimator of θ .
- (b) (5 points) Find the method of moments estimator of θ .
- (c) (5 points) Find the asymptotic distribution for your estimator in part (b) by the Central Limit Theorem.

Facts:
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$
 and $\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$

題號: 239

國立臺灣大學112學年度碩士班招生考試試題

科目:統計理論

節次: 4

題號: 239 共 2 頁之第 2 頁

5. (10 points) Let Y_1, Y_2, \ldots, Y_n be a random sample from $N(\theta, \theta)$, where θ is an unknown parameter. Construct a confidence interval for θ .

6. (10 points) Let Y_1, Y_2, \ldots, Y_n be a random sample from a population with the following density function:

$$f_{\theta}\left(y\right) = \frac{a}{\theta} \left(\frac{y}{\theta}\right)^{a-1} I_{\left(0,\theta\right)}\left(y\right),\,$$

where $a \ge 1$ is known and $\theta > 0$ is unknown. Construct a confidence interval for θ .

7. (10 points) Let (Y_{i1}, Y_{i2}) , where i = 1, 2, ..., n, be a random sample from a bivariate normal distribution with unknown mean vector and covariance matrix. Find a likelihood ratio test for evaluating $H_0: \rho = 0$ and $H_1: \rho \neq 0$, where ρ is the correlation coefficient.

8. (10 points) Let Y_1, Y_2, \ldots, Y_n be a random sample from $N(\mu, \sigma^2)$, where μ and σ^2 are unknown parameters. Show that the power function of the one-sample t-test depends on a non-central t-distribution and it is an increasing function of $(\mu - \mu_0)/\sigma$ for testing $H_0: \mu \leq \mu_0$ and $H_1: \mu > \mu_0$.

9. (10 points) Let Y_1 and Y_2 denote $n_1 \times 1$ and $n_2 \times 1$ independent multivariate normal random vectors, denoted by

$$Y_1 \sim N\left(X_1\beta_1, \sigma_1^2 I_{n_1}\right)$$
 and $Y_2 \sim N\left(X_2\beta_2, \sigma_2^2 I_{n_2}\right)$,

respectively, where X_1 is an $n_1 \times p$ matrix, X_2 is an $n_2 \times p$ matrix, and $rank(X_1) = rank(X_2) = p$. Assume that $\sigma_2^2 = \Delta \times \sigma_1^2$ and Δ is a known constant. Find a test to evaluate $H_0: \beta_1 = \beta_2$ and $H_1: \beta_1 \neq \beta_2$.

試題隨卷繳回