科目: 數理統計

題號:92

共 1 頁之第 1 頁

科曰: 數理就計 節次: 6

1. Let $X_i \sim N(\mu_i, \sigma_i^2)$ for i = 1, ..., 5. X_i are uncorrelated. Use X_i to construct a statistic with the indicated distributions.

(i) χ_3^2 , (3 points)

(ii) t-distribution with df = 3, (3 points)

(iii) F-distribution with df = (2,3). (4 points)

2. Let $X \sim beta(\alpha, \beta)$, where $\alpha > 0$ and $\beta > 0$. Given the pdf of X

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, \ 0 < x < 1,$$

(i) Find $\mathbb{E}X^n$ and var(X).

(10 points)

(ii) Use (i) to obtain the variance of U(0, 1).

(5 points)

3. Let X_1, \ldots, X_n be i.i.d. random variables from $U(\alpha, \beta)$, where $\alpha < \beta$. What are the MLEs of α and β ? (10 points)

4. Let X_1, \ldots, X_n be i.i.d. random variables with cdf $F(\cdot)$, and let the statistic

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \le x),$$

where $I(\cdot)$ is an indicator function.

(i) Show $\mathbb{E}[F_n(x)] = F(x)$.

(5 points)

(ii) Find $var[F_n(x)]$.

(5 points)

(iii) Is $F_n(x)$ an UMVUE of F(x)? Why?

(5 points)

5. Let X_1, \ldots, X_n be i.i.d. random variables from $N(\mu, \sigma^2)$. Assume σ is known. Use the likelihood ratio test to $H_0: \mu = \mu_0$ v.s. $H_1: \mu \neq \mu_0$ at the level of significance α .

(15 points)

6. Let Y_n be a sequence of random variables satisfying $\sqrt{n}(Y_n - \mu) \to N(0, \sigma^2)$ in distribution. For a given function g and a specific value of μ , suppose $g'(\mu) = 0$ and $g''(\mu)$ exists and is not zero. Show

$$n[g(Y_n)-g(\mu)] o \sigma^2rac{g''(\mu)}{2}\chi_1^2$$
 in distribution.

(15 points)

- 7. Let $Y_i = bx_i + \epsilon_i$ for i = 1, ..., n, where $x_1, ..., x_n$ are fixed constants, $\epsilon_1, ..., \epsilon_n$ are i.i.d. $N(0, \sigma^2)$ and σ^2 is unknown.
 - (i) Find the MLE of b, denoted as \hat{b} . Show that \hat{b} is unbiased, and find $var(\hat{b})$. (10 points)
 - (ii) Show that $\hat{b}_1 = \sum_{i=1}^n Y_i / \sum_{i=1}^n x_i$ is an unbiased estimator of b, and calculate $\text{var}(\hat{b}_1)$.

(5 points)

(iii) Compare \hat{b} and \hat{b}_1 , which one is better?

(5 points)