國立中正大學 111 學年度碩士班招生考試

試題

[第2節]

科目名稱	統計學
条所組別	財務金融學系

-作答注意事項-

- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是否相符。
- 1. 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、 畫記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。

國立中正大學 111 學年度碩士班招生考試試題

科目名稱:統計學

本科目共 3 頁 第 1 頁

系所組別:財務金融學系

Part I. blank filling question:

Total 50% and 5% for each blank

- 1. Suppose probabilities of the two events C_1 and C_2 are $Pr(C_1) = Pr(C_2) = 4/7$. The probability of $Pr(C_1 \cap C_2)$ should be at least ___(1)__.
- 2. Let X_1 and X_2 have the joint probability density function: $f(x_1, x_2) = 2$, for $0 < x_1 < x_2 < 1$; and zero elsewhere. Then $\Pr(0 < X_1 < 1/2) =$ ___(2)___ and $\Pr(0 < X_1 < 1/2 | X_2 = 3/4) =$ ___(3)__.
- 3. Assume that $X_i \sim i$. i. d. N(0,1), i = 1, 2, and $Y_j \sim i$. i. d. N(1,1), j = 1, 2, 3, where X_i and Y_j are mutually independent for all i and j. Please answer the following questions: (Note: You should precisely write down the parameter(s) of each distribution in your answers, such as the degree of freedom or the mean and variance parameters in a normal distribution.)

(a) Let
$$Q_1 = \frac{1}{2} \sum_{i=1}^{2} X_i + \frac{1}{3} \sum_{j=1}^{3} Y_i$$
, then the distribution of Q_1 is _____(4)___.

(b) Let
$$Q_2 = X_1^2 + X_2^2 + (Y_3 - 1)^2$$
, then the distribution of Q_2 is _____(5)___.

(c) Let
$$Q_3 = \frac{Y_3 - 1}{\sqrt{(X_1^2 + X_2^2)/2}}$$
, then Q_3 follows the ____(6)___distribution.

4. Suppose that random variable Y has a probability density function given by

$$f(y) = \begin{cases} k(1-y)y^2 & 0 \le y \le 1, \\ 0 & \text{elsewhere.} \end{cases}$$

then k = (8). The variance of Y is (9). The expected value of Y^{-1} is (10).

國立中正大學 111 學年度碩士班招生考試試題

科目名稱:統計學

本科目共3頁 第2頁

系所組別:財務金融學系

Part II. Calculation problems:

Note: You should carefully state the reasons or calculations in the following questions in order to get the points. A short answer, such as "Yes" or "No" will NOT receive any point.

1. (20%) Suppose you estimate the consumption function

$$Y_i = \alpha_1 + \alpha_2 X_i + u_{1,i}, \qquad i = 1, \dots, N$$

and the savings function

$$Z_i = \beta_1 + \beta_2 X_i + u_{2,i}$$

where Y = consumption, Z = savings, X = income and X = Y + Z; that is, income is equal to consumption plus savings.

- (1) What is the relationship, if any, between α_2 and β_2 ? Show your calculations. (5%)
- (2) Will the residual sum of squares (RSS) be the same for these two models? Explain. (10%)
- (3) Can you compare the coefficient of determinant \mathbb{R}^2 of the two models? Why or why not? (5%)

2. (15%) Consider the regression model

$$Y_i = \beta_1 + u_i, \quad i = 1, ..., n.$$

where u_i satisfies all the standard assumptions for a linear regression and $\mathrm{Var}(u_i) = \sigma^2$.

- (1) Find the ordinary least squares (OLS) estimator $\hat{\beta}_1$ of β_1 . (5%)
- (2) Find $Var(\hat{\beta}_1)$. (10%)

國立中正大學 111 學年度碩士班招生考試試題

科目名稱:統計學

本科目共3頁第3頁

系所組別:財務金融學系

3. (15%) Given the random sample (Y_i, X_i) , where i = 1, ..., n, you use the OLS approach to estimate the following model

$$Y_i = \beta_2 X_i + e_i$$
.

Assume the stochastic error e_i satisfies all the standard assumptions for a linear regression and $Var(e_i) = \sigma^2$.

- (1) Find the OLS estimator $\hat{\beta}_2$ of β_2 . (5%)
- (2) Find $Var(\hat{\beta}_2)$. (5%)
- (3) Suppose you want to test the null hypothesis H_0 : $\beta_2 = 1$ and the alternative hypothesis H_a : $\beta_2 \neq 1$. State your test statistic, its distribution and the decision rule of the test given the level of significance α . (5%)