國立臺北大學 111 學年度碩士班一般入學考試試題

系(所)組別:經濟學系

科 目:統計學

第1頁 共3頁 ☑可 □不可使用計算機

- I. 選擇題 (每小題 4%,請在作答時標示大題「I」及其小題號 (1)、(2)...(5),不須另外標示 1、2、3 等):
- 1. Peter has T = 43 observations on variables y, x_1 and x_2 . He estimates the following equation by OLS method:

$$y = 2.0 + 3.0x_1 - 4.0x_2 \dots \dots \dots (1)$$

$$(1.5) \quad (-1.0)$$

where the numbers in parentheses are standard errors for coefficients (except for intercept.). Total sum of squares (SST)=100; $R^2 = 0.8$. What is the true value of the sum of squares errors (SSE) in equation (1)?

- (4 %) ____(1)
- (A) 40
- (B) 80
- (C) 60
- (D) 20
- 2. Continue Question 1, If Peter tests the following hypothesis: H_0 : $\beta_1 = \beta_2 = 0$, what is the value of F-statistic? (4%) ____(2)___
 - (A) 80
 - (B) 16
 - (C) 100
 - (D) 160
- 3. Suppose that the true model of y is $y = \beta_1 x_1 + \beta_2 x_2 + u$, but you estimated an incorrect model by OLS:

$$y = \beta_1 x_1 + v$$
....(2)

The true parameter $\beta_2 < 0$, and $E(x_2|x_1)$ has a linear relationship:

$$E(x_2|x_1) = \delta_0 + \delta_1 x_1.$$

If we have the prior information that OLS estimator $\hat{\beta}_1$ of Equation (2) has positive bias, what is the sign of δ_1 ? (4%) _____(3)____

- (A) $\delta_1 < 0$
- (B) $\delta_1 = 0$
- (C) $\delta_1 > 0$
- (D) cannot decide

國立臺北大學 111 學年度碩士班一般入學考試試題

系	(所)	組別	•	經濟學系
科		月		統計學

第2頁 共3頁 ☑可 □不可使用計算機

- 4. Suppose you have data (y_t, x_t) , t = 1, 2, ..., 50, with $\sum_{t=1}^{50} x_t = 0$, $\sum_{t=1}^{50} y_t = 100$, $\sum_{t=1}^{50} x_t^2 = 100$, $\sum_{t=1}^{50} y_t^2 = 300$ and $\sum_{t=1}^{50} x_t y_t = 50$. What is the R^2 of this regression? (4%) ______(4)
 - (A) 0.125
 - (B) 0.25
 - (C) 0.75
 - (D) 0.032
- 5. Suppose that there is an exact relationship between random variable y_{it} and its lag value y_{it-1} :

$$y_{it} = \beta_1 y_{it-1} + v_{it}$$

A researcher want to estimate the coefficient β by ordinary least squares (OLS) method. Unfortunately, due to data collection mistakes, she only has time average data. $\overline{y}_{it} = \frac{1}{T} \sum_{t=1}^{T} y_{it}$. If she wants to estimate the following regression by OLS method:

$$\overline{y}_{it} = \beta \overline{y}_{it-1} + \overline{v}_{it},$$

- (A) unbiased and consistent
- (B) unbiased and inconsistent
- (C) biased and consistent
- (D) biased and inconsistent
- II. 計算問答題(配分如標示,請在作答時標示大題「II」及其小題號(6)、(7)...(9),不須另外標示1-1、1-2等):
- 1. Consider a simple regression model with no intercept:

$$y_t = \beta x_t + u_t.$$

You have two observations (T=2). Suppose x_1 and x_2 are fixed; $E(u_1) = E(u_2) = 0$; $var(u_1) = 1$, $var(u_2) = 2$, $cov(u_1u_2) = 0$.

- 1-1 (10%) Now consider the estimator $\tilde{\beta} = (x_1y_1 + \frac{1}{2}x_2y_2)/(x_1^2 + \frac{1}{2}x_2^2)$.

 Whether this estimator is unbiased. (6) Calculate its variance. (7)
- 1-2 (10%) Please compare $var(\tilde{\beta})$ with $var(\hat{\beta})$, the variance of least squares estimator $\hat{\beta}$. Does this result contradict the general result that ordinary least squares is efficient? ____(8)____

試題隨卷繳交

接下頁

國立臺北大學 111 學年度碩士班一般入學考試試題

系(所)組別:經濟學系 科 目:統計學

第3頁 共3頁

☑可 □不可使用計算機

2. (10%) A linear stationary time series model relating a variable, y_t , to the rational expectation of the, x_t , is given by

$$y_t = \beta E(x_t | I_{t-1}) + u_t,$$

where $E(x_t|I_{t-1})$ is the expected value of x_t given all information known up to time t-1. Note that, at a minimum, $(y_{t-1}, x_{t-1}, y_{t-2}, x_{t-2,...})$ is contained in I_{t-1} . Throughout this problem assume that $E(u_t|I_{t-1}) = 0$. For simplicity, there is no intercept in the model. Let $\hat{\beta}$ be the OLS estimator from the regression y_t on x_t , t = 1, 2, ..., T. Whether $\hat{\beta}$ is a consistent estimator of β ? _____(9)____

- III. 計算問答題(配分如標示,請在作答時標示大題「III」及其小題號(10)、(11)...(17),不須另外標示 1-1、1-2 等):
 - 1. Consider

$$f(y_1, y_2) = \begin{cases} 6(1 - y_2) & , 0 \le y_1 \le y_2 \le 1, \\ 0 & , otherwise \end{cases}$$

1-1 (7%) Find $P(Y_1 \le 3/4, Y_2 \ge 1/2)$ ____(10)___

1-2 (7%) Find
$$\mathbb{E}(Y_1|Y_2=y_2)$$
 ____(11)___

2. The number Y of defects per yard for a certain fabric is known to have a Poisson distribution with parameter λ . However, λ itself is a random variable with probability density function given by

$$f(\lambda) = \begin{cases} e^{-\lambda} & , \lambda \ge 0, \\ 0 & , elsewhere. \end{cases}$$

- 2-1 (7%) Find the unconditional probability function for Y. ____(12)____
- 2-2 (7%) Find the expected number of defects per yard. ____(13)____
- 3. In a paper, rock and scissor game, you know your opponent is focusing on playing one of the three actions (paper, rock or scissor). The focused action is 2 times more likely to appear than any one of the other two actions.
 - 3-1 (7%) At the first round the opponent played rock. Based on that sample, what is the likelihood function regarding the opponent type? ____(14)____
 - 3-2 (8%) Before the first round you formulate a null hypothesis that the opponent is rock focusing type and will reject that null hypothesis if the first round he does not play rock. What is the probability of type I error? ____(15)____ What is the probability of type II error against the hypothesis the opponent is a paper focusing type? ____(16)____
 - 3-3 (7%) Before the first round, with no information your belief of the opponent's being paper focusing type, rock focusing type and scissor focusing type are all 1/3. After the first round of his playing rock, what should be your Bayesian updated belief regarding his type probabilities? ____(17)____

試題隨卷繳交