國立成功大學 111學年度碩士班招生考試試題

編 號: 44

系 所: 化學系

科 目:物理化學

日 期: 0220

節 次:第1節

備 註:不可使用計算機

國立成功大學 111 學年度碩士班招生考試試題

所: 化學系 考試科目:物理化學

考試日期:0220,節次:1

第1頁,共2頁

編號: 44

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。 說明:1. 請依題序作答並標明題號

2. R= 8.314 J K-1 mol-1 = 0.082 atm L K-1 mol-1

(一)單選題12題,每題5分,共60分,不倒扣。

(1) The pressure on a block of copper at a temperature of 300 K is increased isothermally and reversibly from 1 to 1000 bar. Assume that α , κ and density are constant and equal to $5x10^{-5}$ K⁻¹, $9x10^{-12}$ m²/N, and 9x10³ kg/m³, respectively. Calculate the work done (in J) on the copper per kilogram.

(A)5 (B)12 (C)8 (D)2 (E)15

(2) Calculate the change of entropy (in J/K) on the copper per kilogram in Problem 1. (A)-1.45 (B)-0.56 (C)-0.72 (D)-0.32 (E)-1.85

(3) Apply L'Hopital's rule to the Clapeyron equation either respect to P or T to obtain the second-order phase transition temperature.

 $(A)V\Delta C_p\Delta\alpha/\Delta\kappa \quad (B)(\Delta\alpha)/(V\Delta C_p\Delta\kappa) \quad (C)V(\Delta\kappa)^2/(\Delta C_p\Delta\alpha) \quad (D)\Delta C_p\Delta\kappa/[V(\Delta\alpha)^2]$ $(E)\Delta C_p \Delta \kappa / [V(\Delta \alpha)]$

- (4) A container is divided into two compartments. One contains 2.0 mole H2 at 2.0 atm and 25 °C; the other contains 2.0 mole N2 at 3.0 atm and 25 °C. Calculate the Gibbs free energy of mixing (in 596R) when the partition of the container is removed. Assume that the gases are perfect. (A) $\ln(1.56)$ (B) $\ln(0.45)$ (C) $\ln(0.66)$ (D) $\ln(2.20)$ (E) $\ln(0.24)$
- (5) Consider the reaction

 $A + B \rightleftharpoons P$ (rate constant: forward k1, backward k-1)

, where [A]o= [B]o. A temperature jump experiment is performed where the relaxation time constant is measured to be $5.0x10^{-4}$, resulting an equilibrium where $K_{eq} = 1.0$ with $[P]_{eq} = 0.25$ M. Derive an expression of relaxation time.

 $(A)[k_1([A]_{eq} + [B]_{eq}) - k_{-1}[P]_{eq}]^{-1}$ $(B)k_1([A]_{eq} + [B]_{eq}) - k_{-1}$ $(C)[k_1([A]_{eq} + [B]_{eq}) + k_{-1}]^{-1}$ (D) $[k_{-1}([A]_{eq} + [B]_{eq}) + k_1[P]_{eq}]^{-1}$ $(E)[k_1([A]_{eq} + [B]_{eq}) - k_{-1}]^{-1}$

(6) Calculate k-1 (in 103 s-1) in Problem 5.

(A)1.0 (B)1.5 (C)0.8 (D)2.2 (E)2.5

(7) Consider the reaction $A \rightarrow P$ with rate equation $d[P]/dt = k[A]^n$. Calculate the half-life.

 $(A)2^{n-1}/(n-1)k[A]_0^{n-1}$ $(B)(2^{n-1}-1)/(n-1)k[A]_0^{n-1}$

 $(C)k(2^{n}-1)/(n-1)[A]_{o}^{n-1}$

 $(D)(2^{n-1}-1)/(n-1)k[A]_0^n$ $(E)(2^{n-1}-1)/(n)k[A]_0^{n-1}$

(8) The reaction $2 F_2O(g) \rightarrow 2 F_2(g) + O_2(g)$ is believed to follow the mechanism:

(1) $2 F_2O \rightarrow F + OF + F_2O$

rate constant ki

(2) $F + F_2O \rightarrow F_2 + OF$

rate constant k2

(3) 2 OF \rightarrow O₂ + 2F rate constant k3

(4) $2 F + F_2O \rightarrow F_2 + F_2O$

rate constant k4

Use the steady state approximation to obtain the expression of [F].

國立成功大學 111 學年度碩士班招生考試試題

系 所:化學系 考試科目:物理化學

考試日期:0220,節次:1

第2頁,共2頁

编號: 44

 $(A)(k_1[F_2O]/k_4)^{1/2} \quad (B)(k_2[F_2O]/k_3)^{1/2} \quad (C)(k_1[F_2O]/k_4)^{3/2} \quad (D)k_2[F_2O]^{1/2}/k_4 \quad (E)(k_1)^{1/2}[F_2O]/(k_3)^{1/2}$

(9) The mechanism in Problem (8) can be shown to be consistent with the experimental rate law $-d[F_2O]/dt = k_a [F_2O]^2 + k_b [F_2O]^3$. What is k_b ?

 $(A)(k_2k_1/k_3)^{1/2} \qquad (B)k_3(k_1/k_4)^{1/2} \qquad (C)k_4^{1/2}k_1/k_3 \qquad (D)k_2(k_1/k_4)^{1/2} \qquad (E)k_1(k_2/k_4)^{1/2}$

(10) The schrodinger equation for a particle of mass m moving in a ring of radius r in the xy-plane with zero potential energy is $-(h^2/8\pi^2I)d^2\psi(\phi)/d\phi^2 = E\psi(\phi)$, were $I = mr^2$. What's the normalization constant of the wavefunction?

(A) $\pi^{-1/2}$ (B) $(2\pi)^{-1/2}$ (C) $(2\pi)^{-1}$ (D) 2π (E) π^2

(11) Calculate the expectation value of the angular momentum in Problem 10 represented by the operator $(h/2\pi i)d/d\phi$ if the quantum number is equal to 4?

(A)h/8 π (B) (h/ π)² (C)h/2 π (D)(h/2 π)² (E)2h/ π

(12) How many of the following molecules (H₂, HCl, CO₂, H₂O, CH₃CH₃, N₂, CH₄, CH₃Cl) may show infrared absorption spectra?

(A)4 (B)5 (C)6 (D)7 (E)8

(二)非選擇題 3 題,共 40 分,需寫出計算過程,只寫答案不給分。

(1) Consider a system of particle in a cubic box at certain temperature T_1 , where the energy level is given by $E_n = n^2h^2/(8ma^2)$. Work is done on this system adiabatically and reversibly so that the length of box, a, is reduced to $2^{-1/2}$ of its original length.

(a)Calculate the final temperature.

(6 %)

(b) What's the effect on the molecular partition function?

(5 %)

(c) What's the effect on the occupations of the energy levels?

(5%)

(2) The number of configurations available to a polymer network can be shown to be

$$W = C \exp[-a(L_x^2 + L_y^2 + L_z^2)]$$

, where C and a are constant, and L_x , L_y , L_z are extension ratios in the x, y, and z directions. For an ideal rubber, $dW = -f \, dl$ and dV = 0 in the stretching process. Let $L_x = L_y$, and $L_z = l/l_o = \lambda$, where l and l_o are initial and final sample length.

(a) Derive the entropy of the system as a function of λ .

(8 %)

(b) Use the relation $f = -T(\partial s/\partial l)_T$ to derive the expression of the restoring force f as a function of λ and T. (6%)

(6 %)

(3) Suppose the ground vibrational state of a molecule is modelled by using the particle in a box wavefunction $\psi_0 = (2/L)^{1/2} \sin(\pi x/L)$ for $0 \le x \le L$ and 0 elsewhere. Calculate the Frank-Condon factor for a transition to a vibrational state described by $\psi = (2/L)^{1/2} \sin[(\pi(x-L/2)/L)]$ for $L/2 \le x \le 3L/2$ and 0 elsewhere.