國立政治大學 111 學年度 碩士暨碩士在職專班 招生考試試題

第1頁,共1頁

|考試時間| 2月9日(三) 第二節 試 科 目 數理統計學 系 所 别 統計學系

1. (23%) Two machines of the same type, A and B, always operate under the same environment, but an extra filter had installed on A to reduce the pollutant. Let Y_1 be the amount of pollutant emitted by A, while Y_2 be the pollutant amount emitted by B. The joint pdf is

$$f(y_1, y_2) = \begin{cases} 1/2, & 0 \le y_1 \le 1, 0 \le y_2 \le 4, 4y_1 \le y_2, \\ 0, & \text{otherwise.} \end{cases}$$

- (1) Find the probability that Y_2 / Y_1 is at least 5. (5%)
- (2) Find the condition pdf of Y_1 given $Y_2 = y_2$, and $V(Y_1 | y_2)$. (8%)
- (3) The reduction of pollutant amount due to the filter is $R = Y_2 Y_1$. Find the probability density function of R and its mean. (10%)
- 2.(22%) Let X_1, \dots, X_n be a random sample from $f(x; \theta) = \frac{1}{\theta}, |x| \le \frac{\theta}{2}$; $\theta > 0$.
- (1) Find the complete and sufficient statistic for θ . (10%)
- (2) Find the MVUE (minimum variance unbiased estimator) of $\theta^{-1} + \theta$. (12%)
- 3.(15%) Given that N = n, the conditional pdf of X is $f(x|n) = \frac{x^{n-1}e^{-x}}{\Gamma(n)}$, x > 0.

Moreover, $P(N=n) = \frac{\mu^n e^{-\mu}}{n!}$, n = 0, 1, 2, ...

- (1) Find the unconditional mean and variance of X, i.e. E(X) and V(X)(5%)
- (2) Find the limiting distribution for $\frac{X E(X)}{\sqrt{V(X)}}$ as $\mu \to \infty$. (10%)
- (40%) Let X_1, \dots, X_n be a random sample from $f(x; \theta) = \lambda x^{-(\lambda+1)}, x > 1; \lambda > 0$.
- (1) Find the MLE (maximum likelihood estimator) of λ . (5%)
- (2) Find the Cramer-Rao lower bound for the variance of unbiased estimators of P(X > a), where a is a constant greater than 1. (7%)
- (3) Find the UMP size α test of $H_0: \lambda \leq \lambda_0$ versus $H_1: \lambda > \lambda_0$. (10%)
- (4) Find the $100(1-\alpha)\%$ confidence interval for λ . (6%)
- (5) Let Y_1, \dots, Y_m be another random sample from $f(y; \theta) = \theta y^{-(\theta+1)}, y > 1; \theta > 0$. Derive the likelihood ratio test of $H_0: \lambda = \theta$ versus $H_1: \lambda \neq \theta$. (12%)

二、試題請隨卷繳交。

備

[、]作答於試題上者,不予計分。