國立政治大學 111 學年度 碩士暨碩士在職專班 招生考試試題

第1頁,共2頁

- 1. (36pts). For each of the following statements, determine whether it is true (()) or false (×). (True or false questions. Do not give explanation.)
 - (a) $\lim_{x\to 0} \frac{|3x-1|-|3x+1|}{x}$ does not exist.
 - (b) If functions f(x) and g(x) are continuous on [a, b], then the following definite integrals exist and $\int_a^b f(x)g(x)dx = \int_a^b f(x)dx \int_a^b g(x)dx$.
 - (c) The equations (i) $x^2 + y^2 = 9$, (ii) $x = -3\cos 2t$, $y = -3\sin 2t$ ($0 \le t \le \pi$), and (iii) r = 3 all have the same graph.
 - (d) Suppose that the radius of convergence of the power series $\sum_{k=0}^{\infty} a_k x^k$ is R_0 for $0 < R_0 < \infty$. Then the radius of convergence of the power series $\sum_{k=0}^{\infty} a_k x^{2k}$ is R_0^2 .
 - (e) The function $f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^4} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$ is continuous at (0,0).
 - (f) Suppose $f(x,y): \mathcal{R} \times \mathcal{R} \longrightarrow \mathcal{R}$ has continuous second partial derivatives on $(-\delta, \delta) \times (-\delta, \delta)$ for some $\delta > 0$, and suppose that $f_x(0,0) = 0$ and $f_y(0,0) = 0$. If the matrix $\begin{bmatrix} f_{xx}(0,0) & f_{xy}(0,0) \\ f_{yx}(0,0) & f_{yy}(0,0) \end{bmatrix}$ is positively definite, then f has a local minimum at (0,0).
 - (g) A homogeneous system of four equations in six unknowns always has nontrivial solutions.
 - (h) If A is nonsingular and $A^{-1} = A^{T}$, then $det(A) = \pm 1$.
 - (i) If W_1 and W_2 are subspaces of a vector space V, then $W_1 \bigcup W_2$ is also a subspace of V.
 - (j) Let A and B be $m \times n$ and $n \times m$ matrices respectively. Then AB and BA are well defined and rank $(AB) = \operatorname{rank}(BA)$.
 - (k) Let A be 3×3 matrix. If A has only two distinct eigenvalues λ_1 and λ_2 , then A is not diagonalizable.
 - (l) Suppose $A_{n\times n}$ is similar to a diagonal matrix $D_{n\times n}=[d_{ij}]_{1\leq i,j\leq n}$. Namely, $A=PDP^{-1}$ for some nonsingular matrix $P_{n\times n}$. Then $\sum_{k=1}^{\infty}A^k$ exists if $|d_{ii}|<1$ for all $i=1,2,\ldots,n$.

國立政治大學 111 學年度 碩士暨碩士在職專班 招生考試試題 第2頁,共2頁

والمنافقة فاستحاسه والمراجع	考	試	升	目	基礎數學	系所別	統計學系	考	試	時	間	2月	9 E	(三)	第一節	
- 1				1				ļ								

- 2. (12pts). Please sketch the graph of the polynomial $f(x) = 4x^5 + x^3 2x + 1$ and find the integer a such that the only real root of $4x^5 + x^3 - 2x + 1 = 0$ is in (a, a + 1). Show your work.
- 3. (10pts). Please use appropriate power series to show $\ln 2 = \sum_{k=1}^{\infty} \frac{1}{k2^k}$.
- 4. (10pts). Please evaluate $\int \int_D \frac{(x+2y)\sqrt{x-y+3}}{x+2y+1} dA$ by making an appropriate change of variables, where D is the parallelogram enclosed by the lines x + 2y = 0, x + 2y = 04, x - y = 1, and x - y = 6. Show your work.
- 5. (12pts). Let W be the subspace of \mathbb{R}^4 spanned by the vectors $\mathbf{w}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{w}_2 = \begin{bmatrix} 2 \\ 2 \\ 1 \\ 2 \end{bmatrix}$, and $\mathbf{w}_3 = \begin{bmatrix} -1 \\ 2 \\ 3 \\ 0 \end{bmatrix}$. Please find the (orthogonal) projection of $\mathbf{v} = \begin{bmatrix} 4 \\ 1 \\ 0 \\ -1 \end{bmatrix}$ on W. Show

your work.

備

6. (10pts). Consider the vector space P_2 of all polynomials of degree ≤ 2 together with the zero polynomial. Note $S = \{p_1(t) = t^2 + t + 1, p_2(t) = t + 1, p_3(t) = 1\}$ is a basis for P_2 . Let $L: P_2 \longrightarrow P_2$ be the linear transformation whose matrix with respect to S

is
$$\begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ -1 & 1 & 0 \end{bmatrix}$$
. Please find $L(at^2+bt+c)$. Show your work.

7. (10pts). Records about the migration patterns of a species of bird from year to year among three habitats A, B and C show that of the birds beginning of the year in habitat A, 20% migrate to habitat B, and 50% migrate to habitat C. Of the birds beginning of the year in habitat B, 10% migrate to habitat A, and 10% migrate to habitat C. Of the birds beginning of the year in habitat C, 40% migrate to habitat A, and 40% migrate to habitat B. In the long wrong, what percentage of the birds will live in each of the habitats? Show your work.