國立政治大學 111 學年度 碩士班 招生考試試題

第1頁,共2頁

考 試 科 目統計學 B 所 別 財務工程與金融科技組 考 試 時 間 2月 10日([八])第三節

1. (30%) Brownian Motion

Consider a Brownian motion process $\{B(t), t \geq 0\}$, B(0) = 0 and B(t) is normal with mean 0 and variance t, and $\{B(t), t \geq 0\}$ has stationary and independent increments, where $B(t_1)$, $B(t_2) - B(t_1) \dots B(t_n) - B(t_{n-1})$ for $t_1 < \dots < t_n$ are independent and $B(t_k) - B(t_{k-1})$ is normal with mean 0 and variance $t_k - t_{k-1}$.

- (1) Please give the joint probability density function of $B(t_1)$, $B(t_2)$..., $B(t_n)$ for $t_1 < \cdots < t_n$. (5%)
- (2) Please find the covariance of B(s) and B(t), Cov(B(s), B(t)) for s < t. (5%)
- (3) Please find the conditional distribution of B(t) given B(s) = C, and calculate its conditional mean $\mathbb{E}(B(t)|B(s) = C)$ and conditional variance Var(B(t)|B(s) = C) for s < t. (10%)
- (4) Please find the conditional distribution of B(t) given B(s) = C, and calculate its conditional mean $\mathbb{E}(B(t)|B(s) = C)$ and conditional variance Var(B(t)|B(s) = C) for t < s. (10%)

2. (15%) Martingale

A martingale is a random process X(T) satisfied $\mathbb{E}(|X(T)|) < \infty$ and $\mathbb{E}(X(T)|\mathcal{F}_t) = X(t)$ for T > t, where \mathcal{F}_t is the filtration at time t.

- (1) Please show that $\{Y(t), t \ge 0\}$ is a martingale where $Y(t) = B^2(t) t$. (Hint: find $\mathbb{E}(Y(T)|\mathcal{F}_t, t < T)$). (5%)
- (2) Suppose that we want to use Monte Carlo method to get the price of two-assets rainbow options, so we need to generate two Brownian motion processes $B_1(t)$ and $B_2(t)$ for $t \ge 0$, where they are correlated with correlation ρt , $\binom{B_1(t)}{B_1(t)} \sim MN(\binom{0}{0}, \binom{t}{\rho t} \binom{pt}{t})$. Assume $Z_1(t)$ and $Z_2(t)$ are independent and identically distributed normal with mean 0 and variance t, $Z_i(t) \xrightarrow{i.i.d.} N(0,t)$, i = 1,2. Please describe in detail how to convert two independent random variables $Z_1(t)$, $Z_2(t)$ into two correlated two random variables $B_1(t)$, $B_2(t)$. (10%)

國立政治大學 111 學年度 碩士班 招生考試試題

第2頁,共2頁

考 試 科 目統計學B 所 別 金融學系 考 試 時 間 2月 10日(1<u>八</u>)第三節 財務工程與金融科技組

3. (55%) Ito's Lemma and Black-Scholes Pricing Formula

Let B(t) be a Brownian motion and X(t) be an Ito drift-diffusion process which satisfies the stochastic differential equation:

$$dX(t) = \mu(X(t), t)dt + \sigma(X(t), t)dB(t)$$

where $\mu(X(t), t)$ and $\sigma(X(t), t)$ are the drift term and diffusion term, respectively. If f(t, X(t)) is twice-differentiable function, then the function f follows the process

$$df = \left(\frac{\partial f}{\partial t} + \frac{\partial f}{\partial X(t)}\mu(X(t), t) + \frac{1}{2}\frac{\partial^2 f}{\partial X^2(t)}\sigma^2(X(t), t)\right)dt + \frac{\partial f}{\partial X(t)}\sigma(X(t), t)dB(t).$$

- (1). Do you think what is the advantage of Ito's Lemma for the finance and mathematics? (5%)
- (2) Under physical probability measure \mathcal{P} , given the dynamic of stock price

$$dS_t = \mu S_t dt + \sigma S_t dB_t^{\mathcal{P}}$$

where dS_t denotes the stock price change at instantaneous time, μ presents the expected return of the stock at instantaneous time, σ means the volatility of the stock return, and $dB_t^{\mathcal{P}}$ is the change of the Brownian motion at instantaneous time under \mathcal{P} .

Please use Ito's lemma and show that the solution of the stochastic differential equation is

$$S_T = S_0 e^{(\mu - 0.5\sigma^2)T + \sigma \Delta B_T^p}$$

(10%)

- (3) According to the above results, we know that the stock price S_T is said to have a lognormal distribution. Please find the probability density function, the mean and the variance of the stock price S_T under \mathcal{P} . (10%)
- (4). Please explain the difference between implied volatility and history volatility to calibration the variance of the return for the stock? (10%)?
- (5) Please derive the Black-Scholes pricing formula (as you know method) at time 0 for European call option with the strike K, the maturity T, and the risk-free interest rate r. (10%)
- (6) Please show that $\frac{\partial c_0}{\partial s_0} = N(d_1)$ and $\frac{\partial c_0}{\partial \sigma} = S_0 \sqrt{T} n(d_1)$, where $n(\cdot)$ is the standard normal probability

density function, $N(\cdot)$ is the standard normal cumulative density function, and $d_1 = \frac{\ln(\frac{S_0}{K}) + (r + \frac{1}{2}\sigma^2)T}{\sigma\sqrt{T}}$. (10%)

一、作答於試題上者,不予計分。

註

備

三、試題請隨卷繳交。