國立政治大學 111 學年度 碩士暨碩士在職專班 招生考試試題

第1頁,共3頁

考 試	升 目	統計學	系所別	經濟學系	考試時間	2月9日(三)第四節	
						,	

- 共7大題,合計100分。
- 請依題號順序作答。
- 答題若無詳述理由或計算推導過程,不予計分。
 - 1. (Total 15%) The probability density function of X is given by

$$f(x) = kx^2, \quad 0 < x < 3$$

where k is a constant.

- (a) (5%) Find k.
- (b) (5%) Find the expected value of X.
- (c) (5%) Find the cumulative distribution function of X.
- 2. (Total 15%) The joint distribution of X and Y is given below.

$$Y = 1$$
 $Y = 2$
 $X = 1$ 0.10 0.20
 $X = 2$ 0.60 0.10

- (a) (5%) Find $E[Y \mid X = 1]$.
- (b) (5%) Find the probability distribution of $E[Y \mid X]$.
- (c) (5%) Find $E[E[Y \mid X]]$.
- 3. (Total 14%) Let \overline{X} denote the sample average from a random sample with mean μ and variance σ^2 . Consider an estimator $W = \frac{n-1}{n}\overline{X}$ of μ , where n is the sample size.
 - (a) (3%) Show that W is a biased estimator of μ and find the bias.
 - (b) (3%) What happens to the bias of W as $n \to \infty$?
 - (c) (3%) Find the variance of W.
 - (d) (5%) Is W a consistent estimator of μ ? Explain.

國立政治大學 111 學年度 碩士暨碩士在職專班 招生考試試題

第2頁,共3頁

考 試 科 目 統計學 系 所 別 經濟學系 考 試 時 間 2月9日(三)第四節

- 共7大題,合計100分。
- 請依題號順序作答。
- 答題若無詳述理由或計算推導過程,不予計分。
 - 4. (Total 10%) Show that for random variables Y and X, if $E[Y \mid X] = E[Y]$ then Cov(X,Y) = 0.
 - 5. (Total 8%) Suppose that the logarithm of wages (log(wage)) is related to years of schooling (educ) and work experience (exper, in years) by the conditional expectation:

$$E[log(wage) \mid educ, exper] = \beta_0 + \beta_1 educ + \beta_2 exper$$

where $\beta_0 = 1.05$, $\beta_1 = 0.10$, and $\beta_2 = 0.08$.

- (a) (3%) Interpret β_1 .
- (b) (5%) Suppose that the expected values of educ and exper are 12 years and 20 years, respectively. Find E[log(wage)]. Show your arguments.
- 6. (Total 15%) Consider the following demand and supply equations:

Demand:
$$Q = -\beta_1 P + e_1$$

Supply: $Q = \beta_2 P + e_2$

where Q and P denote quantities and prices, respectively, and the demand error e_1 and supply error e_2 satisfy $E[e_1] = E[e_2] = 0$, $Var(e_1) = Var(e_2) = 1$, and $Cov(e_1, e_2) = 0$.

- (a) (5%) Find the equilibrium price and quantity.
- (b) (5%) Compute $Cov(P, e_1)$ in terms of β_1 and β_2 . (Hint: Use your answers in (a).)
- (c) (5%) Given a random sample $\{P_i, Q_i\}_{i=1}^n$ of equilibrium prices and quantities, consider the following linear regression:

$$Q_i = \gamma_0 + \gamma_1 P_i + u_i$$

where $E[u_i] = 0$ and $E[P_i u_i] = 0$. Find γ_1 in terms of β_1 and β_2 . (Hint: Use your answers in (a).)

國立政治大學 111 學年度 碩士暨碩士在職專班 招生考試試題

第3頁,共3頁

考 試 科 目 統計學 系 所 別 經濟學系 考 試 時 間 2月9日(三)第四節

- 共7大題,合計100分。
- 請依題號順序作答。
- 答題若無詳述理由或計算推導過程,不予計分。
 - 7. (Total 23%) Consider a linear regression for a Cobb-Douglas production function in a log-linear form:

$$\log(Y) = \beta_0 + \beta_1 \log(L) + \beta_2 \log(K) + u$$

where Y is output, L is labor input, K is capital input, u is the error term, and $(\beta_0, \beta_1, \beta_2)$ are coefficients to be estimated.

Given a random sample $\{Y_i, L_i, K_i\}_{i=1}^n$ of n = 525 firms, the OLS estimates $(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2)$ are given below:

$$\widehat{\log(Y_i)} = 1.220 + 0.954 \log(L_i) + 0.256 \log(K_i)$$

and the covariance matrix estimate is:

$$\widehat{Var} \begin{pmatrix} \widehat{\beta}_0 \\ \widehat{\beta}_1 \\ \widehat{\beta}_2 \end{pmatrix} = \begin{pmatrix} 5 & 3 & 2 \\ 3 & 4 & 2 \\ 2 & 2 & 1 \end{pmatrix} \times 10^{-4}$$

- (a) (3%) Interpret $\hat{\beta}_1$.
- (b) (5%) Find the standard error of $\widehat{\beta}_1 + \widehat{\beta}_2$.
- (c) (5%) You are interested in testing constant returns to scale. Write the associated testing hypotheses and the t test statistic.
- (d) (5%) Based on the information above, calculate the t test statistic.
- (e) (5%) Now suppose that unobserved firm-specific productivity positively affects firms' output as well as labor input. Which true value of β_1 , 0.724 or 1.132, do you think would be more likely? Explain your answer.

註

一、作答於試題上者,不予計分。

二、試題請隨卷繳交。