國立政治大學 110 學年度碩士班暨碩士在職專班招生考試試題

第 (頁,共3頁

試 科

基礎數學

系所别

统计断

考試時間2月5日(五)第一節

Part I: multiple choice questions (4 points each)

- 1. Which of the following statements are true?
 - (a) f is differentiable at x_0 implies that f is continuous at x_0 .
 - (b) $f(x) = x^4 + 3$ has an inflection point.
 - (c) $\lim_{x\to\infty} (1+1/x)^x = 1$.
 - (d) $\lim_{x\to\infty} x^{-1/2} \ln x = 0$.
 - (e) None of the above.
- 2. Let $f(x) = \ln(1+x)$. Which of the following statements are true?
 - (a) The Taylor series about x = 0 is $x x^2 + x^3 x^4 + \cdots$, for |x| < 1.
 - (b) The Taylor series about x = 0 is $x x^2/2 + x^3/3 x^4/4 + \cdots$, for |x| < 1.
 - (c) f'(x) is increasing in x for x > -1.
 - (d) f''(x) is increasing in x for x > -1
 - (e) None of the above.
- 3. Consider f(x) = 1/(1+x). Which of the following statements are true:
 - (a) The Taylor series about x = 0 is $1 + x + x^2 + x^3 + \cdots$, for |x| < 1.
 - (b) The Taylor series about x = 0 is $1 x + x^2 x^3 + \cdots$, for |x| < 1.
 - (c) $\int_{-1}^{1} f(x) dx = \infty$.
 - (d) $\int_{-1}^{\infty} f(x)dx = \infty$.
 - (e) None of the above.
- 4. Which of the following statements are true?
 - (a) $1/2 + 1/3 + \cdots + 1/n < \ln n$
 - (b) $1 + 1/2 + 1/3 + \dots + 1/n > \ln n$
 - (c) $1 + 1/2 + 1/3 + 1/4 + \cdots$ does not converge
 - (d) $1 + 1/2^{1.5} + 1/3^{1.5} + 1/4^{1.5} + \cdots$ does not converge.
 - (e) $1/2 1/3 + 1/4 1/5 + \cdots + (-1)^n/n + \cdots$ does not converge.
- 5. Let $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2$ and $x = (x_1, x_2, x_3)^T$, a 3×1 column vector. Which of the following statements are true?
 - (a) The gradient of f with respect to x is $(2x_1, 2x_2, 2x_3)^T$.
 - (b) The Hessian of f with respect to x is $(2,2,2)^T$.
 - (c) The minimum value of f subject to $2x_1 + 2x_2 x_3 = 7$ is 5.
 - (d) The maximum value of f subject to $2x_1 + 2x_2 x_3 = 7$ is 10.
 - (e) None of the above.
- 6. Let $f(x) = (\sin x)/x$. Which of the following statements are true?
 - (a) $\lim_{x\to 0} f(x) = 0$.
 - (b) $\lim_{x\to 0} f(x) = 1$.
 - (c) $\lim_{x \to \frac{\pi}{2}} f(x) = 0$.
 - (d) $\max_x f(x) = 1$.
 - (e) None of the above.

二、試題請隨卷繳交。

國立政治大學 110 學年度碩士班暨碩士在職專班招生考試試題

第 2 頁,共3 頁

試 科

基礎數學系所別级计析

考試時間 2月5 日(五)第一節

- 7. Let $F(x) = \int_0^x [(\sin t)/t] dt$. Which of the following statements are true?
 - (a) $\lim_{x\to 0} F(x) = 0$.
 - (b) $\lim_{x\to 0} F(x) = 1$.
 - (c) $\lim_{x\to\infty} F(x) < \pi$.
 - (d) $\lim_{x\to\infty} F(x) > \pi$.
 - (e) None of the above.
- 8. Let A be an $m \times n$ matrix. Which of the following statements are true?
 - (a) $\operatorname{nullity}(A) + \operatorname{rank}(A) = n$.
 - (b) $rank(A) = rank(A^T)$.
 - (c) If m = 7 and n = 5, then rank(A) is at most 5.
 - (d) Suppose that m = n. Then, "A is singular" \Leftrightarrow "A has rank n".
 - (e) None of the above.
- 9. Let A be an $n \times n$ matrix whose (i,j) component is a_{ij} . The trace of A is defined as $\operatorname{tr} A = \sum_{i=1}^{n} a_{ii}$. Let B and C be $n \times n$ matrices. Which of the following statements are true?
 - (a) tr(AB) = tr(BA).
 - (b) $\operatorname{tr}(ABC) = \operatorname{tr}(CBA)$.
 - (c) $\operatorname{tr}(A^T B) = \operatorname{tr}(AB^T)$.
 - (d) $\operatorname{tr}(A+B) = (\operatorname{tr}B)(\operatorname{tr}A)$.
 - (e) None of the above.
- 10. Let A be an $n \times n$ matrix whose (i,j) component is a_{ij} . Let f be a real-valued function defined on A. Let $\nabla_A f(A)$ be the gradient of f(A) with respect to A: $\nabla_A f(A)$ is defined as an $n \times n$ matrix whose (i,j) entry is $\partial f/\partial a_{ij}$. Let B and C be $n \times n$ matrices. Which of the following statements are true?
 - (a) If $f(A) = \operatorname{tr}(AB)$, then $\nabla_A f(A) = B$.
 - (b) If $f(A) = \operatorname{tr}(AB)$, then $\nabla_A f(A) = B^T$.
 - (c) If $f(A) = \operatorname{tr}(AA^TC)$, then $\nabla_A f(A) = CA + C^TA^T$
 - (d) If $f(A) = \operatorname{tr}(AA^TC)$, then $\nabla_A f(A) = CA + CA^T$
 - (e) None of the above.
- 11. Which of the following statements are true?
 - (a) $A_{n\times n}$ is singular if and only if Ax = b has infinitely many solutions for every $n \times 1$ vector by
 - (b) Every matrix transformation is a linear transformation.
 - (c) If A is a nonsingular upper triangular matrix, then the adjoint matrix is lower triangular.
 - (d) The dimension of the zero space {0} is 0.
 - (e) None of the above.
- 12. Let A be a 2 × 2 matrix defined as $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Which of the following statements are true?
 - (a) The characteristic function is $f_A(\lambda) = \lambda^2 1$.
 - (b) The eigenvalues are $\pm \sqrt{-1} = \pm i$.
 - (c) The eigenvectors are (1,i) and (1,-i)
 - (d) The eigenvectors are (-1, i) and (-1, -i).
 - (e) None of the above.

註

- 一、作答於試題上者,不予計分。
- 二、試題請隨卷繳交。

國立政治大學 110 學年度碩士班暨碩士在職專班招生考試試題

第3頁,共3頁

試科

基础數學 系所别 统計所

考試時間 2月5日(五)第一節

13. Which of the following are projection matrices?

(a)
$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

(c)
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

(d)
$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

(e) None of the above.

14. Find the matrix for the reflection of \mathbb{R}^2 through the x=y line.

(a)
$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

(c)
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

(d)
$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

(e) None of the above.

15. Let A be an $n \times n$ matrix. Which of the following statements are true?

(a) A symmetric matrix A is positive definite if and only if all the eigenvalues of A are positive.

(b)
$$A$$
 is nonsingular if and only if $\det A=0$.

(c) A is singular if and only if 0 is an eigenvalue of A.

(d)
$$\det A = \lambda_1 + \lambda_2 + \cdots + \lambda_n$$
, where λ_i 's are eigenvalues of A .

(e) None of the above.

Part II: short answer questions

1. (10 points) Find the limit.

$$\lim_{x \to \infty} \frac{x^{-1/2} - (x+1)^{-1/2}}{x^{-1}}$$

2. (10 points) Evaluate the integral.

$$\int_0^\infty 2\left(\frac{x}{5}\right)^2 e^{-\left(\frac{x}{5}\right)^2} dx.$$

3. (20 points) Suppose that $u_0 = 1, u_1 = 1$, and $u_n = 2u_{n-1} + 3u_{n-2}$.

(a) Find eigenvalues of the matrix
$$A = \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix}$$
.

(b) Find the value of u_{100} .

註

二、試題請隨卷繳交。