國立政治大學 110 學年度碩士班暨碩士在職專班招生考試試題

第1頁,共2頁

考 試 科 目 微積分 系 所 別 應用數學系	考試時間 2月5日(星期五)第三節
-------------------------	-------------------

Show all your work and carefully justify all your answers. Answers without explanation will not receive any score.

1. (14 points) Consider the following function:

$$f(x) = \begin{cases} 3x - 1, & x < 1; \\ 2x, & x \ge 1. \end{cases}$$

Use the ϵ - δ definition of the limit to show that $\lim_{x\to 1} f(x) = 2$.

2. Consider

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0); \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$$

- (a) (3 points) Find the partial derivatives at (0,0) and the gradient vector $\nabla f(0,0)$.
- (b) (6 points) Use the definition of the directional derivative to find $D_{\mathbf{u}}(0,0)$ for all unit vectors $\mathbf{u} = \langle a, b \rangle$.
- (c) (6 points) Is f continuous at (0,0)? How about differentiability?
- 3. (a) (6 points) Let f(x) be a continuous function. Show that if f(x) has two local maxima, it also must have a local minima.
 - (b) (8 points) Show that part (a) becomes wrong for a function of two variables by finding all local maxima and minima of the function:

$$f(x,y) = -(x^2 - 1)^2 - (x^2y - x - 1)^2.$$

4. (a) (7 points) Evaluate

$$\int \frac{x}{(x+1)(x+2)} \, \mathrm{d}x.$$

(b) (7 points) Evaluate

$$\int_0^1 \frac{\mathrm{d}x}{(2-x)\sqrt{1-x}}.$$

註

國立政治大學 110 學年度碩士班暨碩士在職專班招生考試試題

第2頁,共2頁

2月5日(星期五)第三節 考試時間 應用數學系 系所别 微積分 試 科 目

(a) (7 points) Use a suitable change of variable to compute

$$\iint_R (x+y)^2 e^{x^2 - y^2} \mathrm{d}A,$$

where R is the square with vertices (1,0),(0,1),(-1,0) and (0,-1).

(b) (7 points) Evaluate

$$\iiint_{x^2+y^2+z^2 \le 1} e^{(x^2+y^2+z^2)^{3/2}} dV.$$

6. Consider the series:

$$\sum_{n=0}^{\infty} \frac{x^n}{(n+1)(n+2)}$$

- (a) (3 points) Find radius and interval of convergence.
- (b) (6 points) Show that for |x| < 1:

$$\sum_{n=0}^{\infty} \frac{x^n}{(n+1)(n+2)} = \frac{1-x}{x^2} \ln(1-x) + \frac{1}{x}.$$
 (1)

- (c) (6 points) The function on the right-hand side of (1) has a removable discontinuity at x = 1. Remove it and then show that (1) also holds for x = 1.
- (a) (6 points) Consider

$$f(x) = \int_{\tan x}^{x/4} \sin(t^2) \mathrm{d}t.$$

Compute $f'(\pi)$.

(b) (8 points) Suppose that f(0) = 0 and

$$f'(\ln x) = \begin{cases} 1, & \text{if } 0 < x \le 1; \\ x, & \text{if } 1 < x < \infty. \end{cases}$$

Find f(x).

備